|
from curses import is_term_resized |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from torchvision import models |
|
from lanet_utils import image_grid |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(ConvBlock, self).__init__() |
|
|
|
self.conv = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) |
|
|
|
|
|
class DilationConv3x3(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(DilationConv3x3, self).__init__() |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=2, |
|
dilation=2, |
|
bias=False, |
|
) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class InterestPointModule(nn.Module): |
|
def __init__(self, is_test=False): |
|
super(InterestPointModule, self).__init__() |
|
self.is_test = is_test |
|
|
|
model = models.vgg16_bn(pretrained=True) |
|
|
|
|
|
self.encoder = nn.Sequential(*list(model.features.children())[:33]) |
|
|
|
|
|
self.score_head = nn.Sequential( |
|
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(256), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1), |
|
) |
|
self.softmax = nn.Softmax(dim=1) |
|
|
|
|
|
self.loc_head = nn.Sequential( |
|
nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(256), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.loc_out = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1) |
|
self.shift_out = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.des_out2 = DilationConv3x3(128, 256) |
|
self.des_out3 = DilationConv3x3(256, 256) |
|
self.des_out4 = DilationConv3x3(512, 256) |
|
|
|
def forward(self, x): |
|
B, _, H, W = x.shape |
|
|
|
x = self.encoder[2](self.encoder[1](self.encoder[0](x))) |
|
x = self.encoder[5](self.encoder[4](self.encoder[3](x))) |
|
|
|
x = self.encoder[6](x) |
|
x = self.encoder[9](self.encoder[8](self.encoder[7](x))) |
|
x2 = self.encoder[12](self.encoder[11](self.encoder[10](x))) |
|
|
|
x = self.encoder[13](x2) |
|
x = self.encoder[16](self.encoder[15](self.encoder[14](x))) |
|
x = self.encoder[19](self.encoder[18](self.encoder[17](x))) |
|
x3 = self.encoder[22](self.encoder[21](self.encoder[20](x))) |
|
|
|
x = self.encoder[23](x3) |
|
x = self.encoder[26](self.encoder[25](self.encoder[24](x))) |
|
x = self.encoder[29](self.encoder[28](self.encoder[27](x))) |
|
x = self.encoder[32](self.encoder[31](self.encoder[30](x))) |
|
|
|
B, _, Hc, Wc = x.shape |
|
|
|
|
|
score_x = self.score_head(x) |
|
aware = self.softmax(score_x[:, 0:3, :, :]) |
|
score = score_x[:, 3, :, :].unsqueeze(1).sigmoid() |
|
|
|
border_mask = torch.ones(B, Hc, Wc) |
|
border_mask[:, 0] = 0 |
|
border_mask[:, Hc - 1] = 0 |
|
border_mask[:, :, 0] = 0 |
|
border_mask[:, :, Wc - 1] = 0 |
|
border_mask = border_mask.unsqueeze(1) |
|
score = score * border_mask.to(score.device) |
|
|
|
|
|
coord_x = self.loc_head(x) |
|
coord_cell = self.loc_out(coord_x).tanh() |
|
|
|
shift_ratio = self.shift_out(coord_x).sigmoid() * 2.0 |
|
|
|
step = ((H / Hc) - 1) / 2.0 |
|
center_base = ( |
|
image_grid( |
|
B, |
|
Hc, |
|
Wc, |
|
dtype=coord_cell.dtype, |
|
device=coord_cell.device, |
|
ones=False, |
|
normalized=False, |
|
).mul(H / Hc) |
|
+ step |
|
) |
|
|
|
coord_un = center_base.add(coord_cell.mul(shift_ratio * step)) |
|
coord = coord_un.clone() |
|
coord[:, 0] = torch.clamp(coord_un[:, 0], min=0, max=W - 1) |
|
coord[:, 1] = torch.clamp(coord_un[:, 1], min=0, max=H - 1) |
|
|
|
|
|
desc_block = [] |
|
desc_block.append(self.des_out2(x2)) |
|
desc_block.append(self.des_out3(x3)) |
|
desc_block.append(self.des_out4(x)) |
|
desc_block.append(aware) |
|
|
|
if self.is_test: |
|
coord_norm = coord[:, :2].clone() |
|
coord_norm[:, 0] = (coord_norm[:, 0] / (float(W - 1) / 2.0)) - 1.0 |
|
coord_norm[:, 1] = (coord_norm[:, 1] / (float(H - 1) / 2.0)) - 1.0 |
|
coord_norm = coord_norm.permute(0, 2, 3, 1) |
|
|
|
desc2 = torch.nn.functional.grid_sample(desc_block[0], coord_norm) |
|
desc3 = torch.nn.functional.grid_sample(desc_block[1], coord_norm) |
|
desc4 = torch.nn.functional.grid_sample(desc_block[2], coord_norm) |
|
aware = desc_block[3] |
|
|
|
desc = ( |
|
torch.mul(desc2, aware[:, 0, :, :]) |
|
+ torch.mul(desc3, aware[:, 1, :, :]) |
|
+ torch.mul(desc4, aware[:, 2, :, :]) |
|
) |
|
desc = desc.div( |
|
torch.unsqueeze(torch.norm(desc, p=2, dim=1), 1) |
|
) |
|
|
|
return score, coord, desc |
|
|
|
return score, coord, desc_block |
|
|
|
|
|
class CorrespondenceModule(nn.Module): |
|
def __init__(self, match_type="dual_softmax"): |
|
super(CorrespondenceModule, self).__init__() |
|
self.match_type = match_type |
|
|
|
if self.match_type == "dual_softmax": |
|
self.temperature = 0.1 |
|
else: |
|
raise NotImplementedError() |
|
|
|
def forward(self, source_desc, target_desc): |
|
b, c, h, w = source_desc.size() |
|
|
|
source_desc = source_desc.div( |
|
torch.unsqueeze(torch.norm(source_desc, p=2, dim=1), 1) |
|
).view(b, -1, h * w) |
|
target_desc = target_desc.div( |
|
torch.unsqueeze(torch.norm(target_desc, p=2, dim=1), 1) |
|
).view(b, -1, h * w) |
|
|
|
if self.match_type == "dual_softmax": |
|
sim_mat = ( |
|
torch.einsum("bcm, bcn -> bmn", source_desc, target_desc) |
|
/ self.temperature |
|
) |
|
confidence_matrix = F.softmax(sim_mat, 1) * F.softmax(sim_mat, 2) |
|
else: |
|
raise NotImplementedError() |
|
|
|
return confidence_matrix |
|
|