|
import torch |
|
import torch.nn as nn |
|
|
|
eps = 1e-8 |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
def sinkhorn(M, r, c, iteration): |
|
p = torch.softmax(M, dim=-1) |
|
u = torch.ones_like(r) |
|
v = torch.ones_like(c) |
|
for _ in range(iteration): |
|
u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps) |
|
v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps) |
|
p = p * u.unsqueeze(-1) * v.unsqueeze(-2) |
|
return p |
|
|
|
|
|
def sink_algorithm(M, dustbin, iteration): |
|
M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1) |
|
M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2) |
|
r = torch.ones([M.shape[0], M.shape[1] - 1], device=device) |
|
r = torch.cat([r, torch.ones([M.shape[0], 1], device=device) * M.shape[1]], dim=-1) |
|
c = torch.ones([M.shape[0], M.shape[2] - 1], device=device) |
|
c = torch.cat([c, torch.ones([M.shape[0], 1], device=device) * M.shape[2]], dim=-1) |
|
p = sinkhorn(M, r, c, iteration) |
|
return p |
|
|
|
|
|
def seeding( |
|
nn_index1, |
|
nn_index2, |
|
x1, |
|
x2, |
|
topk, |
|
match_score, |
|
confbar, |
|
nms_radius, |
|
use_mc=True, |
|
test=False, |
|
): |
|
|
|
|
|
if use_mc: |
|
mask_not_mutual = nn_index2.gather(dim=-1, index=nn_index1) != torch.arange( |
|
nn_index1.shape[1], device=device |
|
) |
|
match_score[mask_not_mutual] = -1 |
|
|
|
pos_dismat1 = ( |
|
( |
|
(x1.norm(p=2, dim=-1) ** 2).unsqueeze_(-1) |
|
+ (x1.norm(p=2, dim=-1) ** 2).unsqueeze_(-2) |
|
- 2 * (x1 @ x1.transpose(1, 2)) |
|
) |
|
.abs_() |
|
.sqrt_() |
|
) |
|
x2 = x2.gather(index=nn_index1.unsqueeze(-1).expand(-1, -1, 2), dim=1) |
|
pos_dismat2 = ( |
|
( |
|
(x2.norm(p=2, dim=-1) ** 2).unsqueeze_(-1) |
|
+ (x2.norm(p=2, dim=-1) ** 2).unsqueeze_(-2) |
|
- 2 * (x2 @ x2.transpose(1, 2)) |
|
) |
|
.abs_() |
|
.sqrt_() |
|
) |
|
radius1, radius2 = nms_radius * pos_dismat1.mean( |
|
dim=(1, 2), keepdim=True |
|
), nms_radius * pos_dismat2.mean(dim=(1, 2), keepdim=True) |
|
nms_mask = (pos_dismat1 >= radius1) & (pos_dismat2 >= radius2) |
|
mask_not_local_max = ( |
|
match_score.unsqueeze(-1) >= match_score.unsqueeze(-2) |
|
) | nms_mask |
|
mask_not_local_max = ~(mask_not_local_max.min(dim=-1).values) |
|
match_score[mask_not_local_max] = -1 |
|
|
|
|
|
match_score[match_score < confbar] = -1 |
|
mask_survive = match_score > 0 |
|
if test: |
|
topk = min(mask_survive.sum(dim=1)[0] + 2, topk) |
|
_, topindex = torch.topk(match_score, topk, dim=-1) |
|
seed_index1, seed_index2 = topindex, nn_index1.gather(index=topindex, dim=-1) |
|
return seed_index1, seed_index2 |
|
|
|
|
|
class PointCN(nn.Module): |
|
def __init__(self, channels, out_channels): |
|
nn.Module.__init__(self) |
|
self.shot_cut = nn.Conv1d(channels, out_channels, kernel_size=1) |
|
self.conv = nn.Sequential( |
|
nn.InstanceNorm1d(channels, eps=1e-3), |
|
nn.SyncBatchNorm(channels), |
|
nn.ReLU(), |
|
nn.Conv1d(channels, channels, kernel_size=1), |
|
nn.InstanceNorm1d(channels, eps=1e-3), |
|
nn.SyncBatchNorm(channels), |
|
nn.ReLU(), |
|
nn.Conv1d(channels, out_channels, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
return self.conv(x) + self.shot_cut(x) |
|
|
|
|
|
class attention_propagantion(nn.Module): |
|
def __init__(self, channel, head): |
|
nn.Module.__init__(self) |
|
self.head = head |
|
self.head_dim = channel // head |
|
self.query_filter, self.key_filter, self.value_filter = ( |
|
nn.Conv1d(channel, channel, kernel_size=1), |
|
nn.Conv1d(channel, channel, kernel_size=1), |
|
nn.Conv1d(channel, channel, kernel_size=1), |
|
) |
|
self.mh_filter = nn.Conv1d(channel, channel, kernel_size=1) |
|
self.cat_filter = nn.Sequential( |
|
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1), |
|
nn.SyncBatchNorm(2 * channel), |
|
nn.ReLU(), |
|
nn.Conv1d(2 * channel, channel, kernel_size=1), |
|
) |
|
|
|
def forward(self, desc1, desc2, weight_v=None): |
|
|
|
batch_size = desc1.shape[0] |
|
query, key, value = ( |
|
self.query_filter(desc1).view(batch_size, self.head, self.head_dim, -1), |
|
self.key_filter(desc2).view(batch_size, self.head, self.head_dim, -1), |
|
self.value_filter(desc2).view(batch_size, self.head, self.head_dim, -1), |
|
) |
|
if weight_v is not None: |
|
value = value * weight_v.view(batch_size, 1, 1, -1) |
|
score = torch.softmax( |
|
torch.einsum("bhdn,bhdm->bhnm", query, key) / self.head_dim**0.5, dim=-1 |
|
) |
|
add_value = torch.einsum("bhnm,bhdm->bhdn", score, value).reshape( |
|
batch_size, self.head_dim * self.head, -1 |
|
) |
|
add_value = self.mh_filter(add_value) |
|
desc1_new = desc1 + self.cat_filter(torch.cat([desc1, add_value], dim=1)) |
|
return desc1_new |
|
|
|
|
|
class hybrid_block(nn.Module): |
|
def __init__(self, channel, head): |
|
nn.Module.__init__(self) |
|
self.head = head |
|
self.channel = channel |
|
self.attention_block_down = attention_propagantion(channel, head) |
|
self.cluster_filter = nn.Sequential( |
|
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1), |
|
nn.SyncBatchNorm(2 * channel), |
|
nn.ReLU(), |
|
nn.Conv1d(2 * channel, 2 * channel, kernel_size=1), |
|
) |
|
self.cross_filter = attention_propagantion(channel, head) |
|
self.confidence_filter = PointCN(2 * channel, 1) |
|
self.attention_block_self = attention_propagantion(channel, head) |
|
self.attention_block_up = attention_propagantion(channel, head) |
|
|
|
def forward(self, desc1, desc2, seed_index1, seed_index2): |
|
cluster1, cluster2 = desc1.gather( |
|
dim=-1, index=seed_index1.unsqueeze(1).expand(-1, self.channel, -1) |
|
), desc2.gather( |
|
dim=-1, index=seed_index2.unsqueeze(1).expand(-1, self.channel, -1) |
|
) |
|
|
|
|
|
cluster1, cluster2 = self.attention_block_down( |
|
cluster1, desc1 |
|
), self.attention_block_down(cluster2, desc2) |
|
concate_cluster = self.cluster_filter(torch.cat([cluster1, cluster2], dim=1)) |
|
|
|
cluster1, cluster2 = self.cross_filter( |
|
concate_cluster[:, : self.channel], concate_cluster[:, self.channel :] |
|
), self.cross_filter( |
|
concate_cluster[:, self.channel :], concate_cluster[:, : self.channel] |
|
) |
|
cluster1, cluster2 = self.attention_block_self( |
|
cluster1, cluster1 |
|
), self.attention_block_self(cluster2, cluster2) |
|
|
|
seed_weight = self.confidence_filter(torch.cat([cluster1, cluster2], dim=1)) |
|
seed_weight = torch.sigmoid(seed_weight).squeeze(1) |
|
desc1_new, desc2_new = self.attention_block_up( |
|
desc1, cluster1, seed_weight |
|
), self.attention_block_up(desc2, cluster2, seed_weight) |
|
return desc1_new, desc2_new, seed_weight |
|
|
|
|
|
class matcher(nn.Module): |
|
def __init__(self, config): |
|
nn.Module.__init__(self) |
|
self.seed_top_k = config.seed_top_k |
|
self.conf_bar = config.conf_bar |
|
self.seed_radius_coe = config.seed_radius_coe |
|
self.use_score_encoding = config.use_score_encoding |
|
self.detach_iter = config.detach_iter |
|
self.seedlayer = config.seedlayer |
|
self.layer_num = config.layer_num |
|
self.sink_iter = config.sink_iter |
|
|
|
self.position_encoder = nn.Sequential( |
|
nn.Conv1d(3, 32, kernel_size=1) |
|
if config.use_score_encoding |
|
else nn.Conv1d(2, 32, kernel_size=1), |
|
nn.SyncBatchNorm(32), |
|
nn.ReLU(), |
|
nn.Conv1d(32, 64, kernel_size=1), |
|
nn.SyncBatchNorm(64), |
|
nn.ReLU(), |
|
nn.Conv1d(64, 128, kernel_size=1), |
|
nn.SyncBatchNorm(128), |
|
nn.ReLU(), |
|
nn.Conv1d(128, 256, kernel_size=1), |
|
nn.SyncBatchNorm(256), |
|
nn.ReLU(), |
|
nn.Conv1d(256, config.net_channels, kernel_size=1), |
|
) |
|
|
|
self.hybrid_block = nn.Sequential( |
|
*[ |
|
hybrid_block(config.net_channels, config.head) |
|
for _ in range(config.layer_num) |
|
] |
|
) |
|
self.final_project = nn.Conv1d( |
|
config.net_channels, config.net_channels, kernel_size=1 |
|
) |
|
self.dustbin = nn.Parameter(torch.tensor(1.5, dtype=torch.float32)) |
|
|
|
|
|
if len(config.seedlayer) != 1: |
|
self.mid_dustbin = nn.ParameterDict( |
|
{ |
|
str(i): nn.Parameter(torch.tensor(2, dtype=torch.float32)) |
|
for i in config.seedlayer[1:] |
|
} |
|
) |
|
self.mid_final_project = nn.Conv1d( |
|
config.net_channels, config.net_channels, kernel_size=1 |
|
) |
|
|
|
def forward(self, data, test_mode=True): |
|
x1, x2, desc1, desc2 = ( |
|
data["x1"][:, :, :2], |
|
data["x2"][:, :, :2], |
|
data["desc1"], |
|
data["desc2"], |
|
) |
|
desc1, desc2 = torch.nn.functional.normalize( |
|
desc1, dim=-1 |
|
), torch.nn.functional.normalize(desc2, dim=-1) |
|
if test_mode: |
|
encode_x1, encode_x2 = data["x1"], data["x2"] |
|
else: |
|
encode_x1, encode_x2 = data["aug_x1"], data["aug_x2"] |
|
|
|
|
|
desc_dismat = (2 - 2 * torch.matmul(desc1, desc2.transpose(1, 2))).sqrt_() |
|
values, nn_index = torch.topk( |
|
desc_dismat, k=2, largest=False, dim=-1, sorted=True |
|
) |
|
nn_index2 = torch.min(desc_dismat, dim=1).indices.squeeze(1) |
|
inverse_ratio_score, nn_index1 = ( |
|
values[:, :, 1] / values[:, :, 0], |
|
nn_index[:, :, 0], |
|
) |
|
|
|
|
|
seed_index1, seed_index2 = seeding( |
|
nn_index1, |
|
nn_index2, |
|
x1, |
|
x2, |
|
self.seed_top_k[0], |
|
inverse_ratio_score, |
|
self.conf_bar[0], |
|
self.seed_radius_coe, |
|
test=test_mode, |
|
) |
|
|
|
|
|
desc1, desc2 = desc1.transpose(1, 2), desc2.transpose(1, 2) |
|
if not self.use_score_encoding: |
|
encode_x1, encode_x2 = encode_x1[:, :, :2], encode_x2[:, :, :2] |
|
encode_x1, encode_x2 = encode_x1.transpose(1, 2), encode_x2.transpose(1, 2) |
|
x1_pos_embedding, x2_pos_embedding = self.position_encoder( |
|
encode_x1 |
|
), self.position_encoder(encode_x2) |
|
aug_desc1, aug_desc2 = x1_pos_embedding + desc1, x2_pos_embedding + desc2 |
|
|
|
seed_weight_tower, mid_p_tower, seed_index_tower, nn_index_tower = ( |
|
[], |
|
[], |
|
[], |
|
[], |
|
) |
|
seed_index_tower.append(torch.stack([seed_index1, seed_index2], dim=-1)) |
|
nn_index_tower.append(nn_index1) |
|
|
|
seed_para_index = 0 |
|
for i in range(self.layer_num): |
|
|
|
if i in self.seedlayer and i != 0: |
|
seed_para_index += 1 |
|
aug_desc1, aug_desc2 = self.mid_final_project( |
|
aug_desc1 |
|
), self.mid_final_project(aug_desc2) |
|
M = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2) |
|
p = sink_algorithm( |
|
M, self.mid_dustbin[str(i)], self.sink_iter[seed_para_index - 1] |
|
) |
|
mid_p_tower.append(p) |
|
|
|
values, nn_index = torch.topk(p[:, :-1, :-1], k=1, dim=-1) |
|
nn_index2 = torch.max(p[:, :-1, :-1], dim=1).indices.squeeze(1) |
|
p_match_score, nn_index1 = values[:, :, 0], nn_index[:, :, 0] |
|
|
|
seed_index1, seed_index2 = seeding( |
|
nn_index1, |
|
nn_index2, |
|
x1, |
|
x2, |
|
self.seed_top_k[seed_para_index], |
|
p_match_score, |
|
self.conf_bar[seed_para_index], |
|
self.seed_radius_coe, |
|
test=test_mode, |
|
) |
|
seed_index_tower.append( |
|
torch.stack([seed_index1, seed_index2], dim=-1) |
|
), nn_index_tower.append(nn_index1) |
|
if not test_mode and data["step"] < self.detach_iter: |
|
aug_desc1, aug_desc2 = aug_desc1.detach(), aug_desc2.detach() |
|
|
|
aug_desc1, aug_desc2, seed_weight = self.hybrid_block[i]( |
|
aug_desc1, aug_desc2, seed_index1, seed_index2 |
|
) |
|
seed_weight_tower.append(seed_weight) |
|
|
|
aug_desc1, aug_desc2 = self.final_project(aug_desc1), self.final_project( |
|
aug_desc2 |
|
) |
|
cmat = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2) |
|
p = sink_algorithm(cmat, self.dustbin, self.sink_iter[-1]) |
|
|
|
|
|
|
|
return { |
|
"p": p, |
|
"seed_conf": seed_weight_tower, |
|
"seed_index": seed_index_tower, |
|
"mid_p": mid_p_tower, |
|
"nn_index": nn_index_tower, |
|
} |
|
|