|
import sys |
|
from pathlib import Path |
|
import torch |
|
|
|
from ..utils.base_model import BaseModel |
|
|
|
alike_path = Path(__file__).parent / "../../third_party/ALIKE" |
|
sys.path.append(str(alike_path)) |
|
from alike import ALike as Alike_ |
|
from alike import configs |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class Alike(BaseModel): |
|
default_conf = { |
|
"model_name": "alike-t", |
|
"use_relu": True, |
|
"multiscale": False, |
|
"max_keypoints": 1000, |
|
"detection_threshold": 0.5, |
|
"top_k": -1, |
|
"sub_pixel": False, |
|
} |
|
|
|
required_inputs = ["image"] |
|
|
|
def _init(self, conf): |
|
self.net = Alike_( |
|
**configs[conf["model_name"]], |
|
device=device, |
|
top_k=conf["top_k"], |
|
scores_th=conf["detection_threshold"], |
|
n_limit=conf["max_keypoints"], |
|
) |
|
|
|
def _forward(self, data): |
|
image = data["image"] |
|
image = image.permute(0, 2, 3, 1).squeeze() |
|
image = image.cpu().numpy() * 255.0 |
|
pred = self.net(image, sub_pixel=self.conf["sub_pixel"]) |
|
|
|
keypoints = pred["keypoints"] |
|
descriptors = pred["descriptors"] |
|
scores = pred["scores"] |
|
|
|
return { |
|
"keypoints": torch.from_numpy(keypoints)[None], |
|
"scores": torch.from_numpy(scores)[None], |
|
"descriptors": torch.from_numpy(descriptors.T)[None], |
|
} |
|
|