import copy import os import cv2 import glob import logging import argparse import numpy as np from tqdm import tqdm from alike import ALike, configs class ImageLoader(object): def __init__(self, filepath: str): self.N = 3000 if filepath.startswith('camera'): camera = int(filepath[6:]) self.cap = cv2.VideoCapture(camera) if not self.cap.isOpened(): raise IOError(f"Can't open camera {camera}!") logging.info(f'Opened camera {camera}') self.mode = 'camera' elif os.path.exists(filepath): if os.path.isfile(filepath): self.cap = cv2.VideoCapture(filepath) if not self.cap.isOpened(): raise IOError(f"Can't open video {filepath}!") rate = self.cap.get(cv2.CAP_PROP_FPS) self.N = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1 duration = self.N / rate logging.info(f'Opened video {filepath}') logging.info(f'Frames: {self.N}, FPS: {rate}, Duration: {duration}s') self.mode = 'video' else: self.images = glob.glob(os.path.join(filepath, '*.png')) + \ glob.glob(os.path.join(filepath, '*.jpg')) + \ glob.glob(os.path.join(filepath, '*.ppm')) self.images.sort() self.N = len(self.images) logging.info(f'Loading {self.N} images') self.mode = 'images' else: raise IOError('Error filepath (camerax/path of images/path of videos): ', filepath) def __getitem__(self, item): if self.mode == 'camera' or self.mode == 'video': if item > self.N: return None ret, img = self.cap.read() if not ret: raise "Can't read image from camera" if self.mode == 'video': self.cap.set(cv2.CAP_PROP_POS_FRAMES, item) elif self.mode == 'images': filename = self.images[item] img = cv2.imread(filename) if img is None: raise Exception('Error reading image %s' % filename) return img def __len__(self): return self.N class SimpleTracker(object): def __init__(self): self.pts_prev = None self.desc_prev = None def update(self, img, pts, desc): N_matches = 0 if self.pts_prev is None: self.pts_prev = pts self.desc_prev = desc out = copy.deepcopy(img) for pt1 in pts: p1 = (int(round(pt1[0])), int(round(pt1[1]))) cv2.circle(out, p1, 1, (0, 0, 255), -1, lineType=16) else: matches = self.mnn_mather(self.desc_prev, desc) mpts1, mpts2 = self.pts_prev[matches[:, 0]], pts[matches[:, 1]] N_matches = len(matches) out = copy.deepcopy(img) for pt1, pt2 in zip(mpts1, mpts2): p1 = (int(round(pt1[0])), int(round(pt1[1]))) p2 = (int(round(pt2[0])), int(round(pt2[1]))) cv2.line(out, p1, p2, (0, 255, 0), lineType=16) cv2.circle(out, p2, 1, (0, 0, 255), -1, lineType=16) self.pts_prev = pts self.desc_prev = desc return out, N_matches def mnn_mather(self, desc1, desc2): sim = desc1 @ desc2.transpose() sim[sim < 0.9] = 0 nn12 = np.argmax(sim, axis=1) nn21 = np.argmax(sim, axis=0) ids1 = np.arange(0, sim.shape[0]) mask = (ids1 == nn21[nn12]) matches = np.stack([ids1[mask], nn12[mask]]) return matches.transpose() if __name__ == '__main__': parser = argparse.ArgumentParser(description='ALike Demo.') parser.add_argument('input', type=str, default='', help='Image directory or movie file or "camera0" (for webcam0).') parser.add_argument('--model', choices=['alike-t', 'alike-s', 'alike-n', 'alike-l'], default="alike-t", help="The model configuration") parser.add_argument('--device', type=str, default='cuda', help="Running device (default: cuda).") parser.add_argument('--top_k', type=int, default=-1, help='Detect top K keypoints. -1 for threshold based mode, >0 for top K mode. (default: -1)') parser.add_argument('--scores_th', type=float, default=0.2, help='Detector score threshold (default: 0.2).') parser.add_argument('--n_limit', type=int, default=5000, help='Maximum number of keypoints to be detected (default: 5000).') parser.add_argument('--no_display', action='store_true', help='Do not display images to screen. Useful if running remotely (default: False).') parser.add_argument('--no_sub_pixel', action='store_true', help='Do not detect sub-pixel keypoints (default: False).') args = parser.parse_args() logging.basicConfig(level=logging.INFO) image_loader = ImageLoader(args.input) model = ALike(**configs[args.model], device=args.device, top_k=args.top_k, scores_th=args.scores_th, n_limit=args.n_limit) tracker = SimpleTracker() if not args.no_display: logging.info("Press 'q' to stop!") cv2.namedWindow(args.model) runtime = [] progress_bar = tqdm(image_loader) for img in progress_bar: if img is None: break img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) pred = model(img_rgb, sub_pixel=not args.no_sub_pixel) kpts = pred['keypoints'] desc = pred['descriptors'] runtime.append(pred['time']) out, N_matches = tracker.update(img, kpts, desc) ave_fps = (1. / np.stack(runtime)).mean() status = f"Fps:{ave_fps:.1f}, Keypoints/Matches: {len(kpts)}/{N_matches}" progress_bar.set_description(status) if not args.no_display: cv2.setWindowTitle(args.model, args.model + ': ' + status) cv2.imshow(args.model, out) if cv2.waitKey(1) == ord('q'): break logging.info('Finished!') if not args.no_display: logging.info('Press any key to exit!') cv2.waitKey()