import numpy as np import cv2 import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode import torch.nn.functional as F from PIL import Image device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Code taken from https://github.com/PruneTruong/DenseMatching/blob/40c29a6b5c35e86b9509e65ab0cd12553d998e5f/validation/utils_pose_estimation.py # --- GEOMETRY --- def estimate_pose(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999): if len(kpts0) < 5: return None K0inv = np.linalg.inv(K0[:2,:2]) K1inv = np.linalg.inv(K1[:2,:2]) kpts0 = (K0inv @ (kpts0-K0[None,:2,2]).T).T kpts1 = (K1inv @ (kpts1-K1[None,:2,2]).T).T E, mask = cv2.findEssentialMat( kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf, method=cv2.RANSAC ) ret = None if E is not None: best_num_inliers = 0 for _E in np.split(E, len(E) / 3): n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask) if n > best_num_inliers: best_num_inliers = n ret = (R, t, mask.ravel() > 0) return ret def rotate_intrinsic(K, n): base_rot = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) rot = np.linalg.matrix_power(base_rot, n) return rot @ K def rotate_pose_inplane(i_T_w, rot): rotation_matrices = [ np.array( [ [np.cos(r), -np.sin(r), 0.0, 0.0], [np.sin(r), np.cos(r), 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ], dtype=np.float32, ) for r in [np.deg2rad(d) for d in (0, 270, 180, 90)] ] return np.dot(rotation_matrices[rot], i_T_w) def scale_intrinsics(K, scales): scales = np.diag([1.0 / scales[0], 1.0 / scales[1], 1.0]) return np.dot(scales, K) def to_homogeneous(points): return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1) def angle_error_mat(R1, R2): cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2 cos = np.clip(cos, -1.0, 1.0) # numercial errors can make it out of bounds return np.rad2deg(np.abs(np.arccos(cos))) def angle_error_vec(v1, v2): n = np.linalg.norm(v1) * np.linalg.norm(v2) return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0))) def compute_pose_error(T_0to1, R, t): R_gt = T_0to1[:3, :3] t_gt = T_0to1[:3, 3] error_t = angle_error_vec(t.squeeze(), t_gt) error_t = np.minimum(error_t, 180 - error_t) # ambiguity of E estimation error_R = angle_error_mat(R, R_gt) return error_t, error_R def pose_auc(errors, thresholds): sort_idx = np.argsort(errors) errors = np.array(errors.copy())[sort_idx] recall = (np.arange(len(errors)) + 1) / len(errors) errors = np.r_[0.0, errors] recall = np.r_[0.0, recall] aucs = [] for t in thresholds: last_index = np.searchsorted(errors, t) r = np.r_[recall[:last_index], recall[last_index - 1]] e = np.r_[errors[:last_index], t] aucs.append(np.trapz(r, x=e) / t) return aucs # From Patch2Pix https://github.com/GrumpyZhou/patch2pix def get_depth_tuple_transform_ops(resize=None, normalize=True, unscale=False): ops = [] if resize: ops.append(TupleResize(resize, mode=InterpolationMode.BILINEAR)) return TupleCompose(ops) def get_tuple_transform_ops(resize=None, normalize=True, unscale=False): ops = [] if resize: ops.append(TupleResize(resize)) if normalize: ops.append(TupleToTensorScaled()) ops.append( TupleNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ) # Imagenet mean/std else: if unscale: ops.append(TupleToTensorUnscaled()) else: ops.append(TupleToTensorScaled()) return TupleCompose(ops) class ToTensorScaled(object): """Convert a RGB PIL Image to a CHW ordered Tensor, scale the range to [0, 1]""" def __call__(self, im): if not isinstance(im, torch.Tensor): im = np.array(im, dtype=np.float32).transpose((2, 0, 1)) im /= 255.0 return torch.from_numpy(im) else: return im def __repr__(self): return "ToTensorScaled(./255)" class TupleToTensorScaled(object): def __init__(self): self.to_tensor = ToTensorScaled() def __call__(self, im_tuple): return [self.to_tensor(im) for im in im_tuple] def __repr__(self): return "TupleToTensorScaled(./255)" class ToTensorUnscaled(object): """Convert a RGB PIL Image to a CHW ordered Tensor""" def __call__(self, im): return torch.from_numpy(np.array(im, dtype=np.float32).transpose((2, 0, 1))) def __repr__(self): return "ToTensorUnscaled()" class TupleToTensorUnscaled(object): """Convert a RGB PIL Image to a CHW ordered Tensor""" def __init__(self): self.to_tensor = ToTensorUnscaled() def __call__(self, im_tuple): return [self.to_tensor(im) for im in im_tuple] def __repr__(self): return "TupleToTensorUnscaled()" class TupleResize(object): def __init__(self, size, mode=InterpolationMode.BICUBIC): self.size = size self.resize = transforms.Resize(size, mode) def __call__(self, im_tuple): return [self.resize(im) for im in im_tuple] def __repr__(self): return "TupleResize(size={})".format(self.size) class TupleNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std self.normalize = transforms.Normalize(mean=mean, std=std) def __call__(self, im_tuple): return [self.normalize(im) for im in im_tuple] def __repr__(self): return "TupleNormalize(mean={}, std={})".format(self.mean, self.std) class TupleCompose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, im_tuple): for t in self.transforms: im_tuple = t(im_tuple) return im_tuple def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string @torch.no_grad() def warp_kpts(kpts0, depth0, depth1, T_0to1, K0, K1): """Warp kpts0 from I0 to I1 with depth, K and Rt Also check covisibility and depth consistency. Depth is consistent if relative error < 0.2 (hard-coded). # https://github.com/zju3dv/LoFTR/blob/94e98b695be18acb43d5d3250f52226a8e36f839/src/loftr/utils/geometry.py adapted from here Args: kpts0 (torch.Tensor): [N, L, 2] - , should be normalized in (-1,1) depth0 (torch.Tensor): [N, H, W], depth1 (torch.Tensor): [N, H, W], T_0to1 (torch.Tensor): [N, 3, 4], K0 (torch.Tensor): [N, 3, 3], K1 (torch.Tensor): [N, 3, 3], Returns: calculable_mask (torch.Tensor): [N, L] warped_keypoints0 (torch.Tensor): [N, L, 2] """ ( n, h, w, ) = depth0.shape kpts0_depth = F.grid_sample(depth0[:, None], kpts0[:, :, None], mode="bilinear")[ :, 0, :, 0 ] kpts0 = torch.stack( (w * (kpts0[..., 0] + 1) / 2, h * (kpts0[..., 1] + 1) / 2), dim=-1 ) # [-1+1/h, 1-1/h] -> [0.5, h-0.5] # Sample depth, get calculable_mask on depth != 0 nonzero_mask = kpts0_depth != 0 # Unproject kpts0_h = ( torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1) * kpts0_depth[..., None] ) # (N, L, 3) kpts0_n = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L) kpts0_cam = kpts0_n # Rigid Transform w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L) w_kpts0_depth_computed = w_kpts0_cam[:, 2, :] # Project w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3) w_kpts0 = w_kpts0_h[:, :, :2] / ( w_kpts0_h[:, :, [2]] + 1e-4 ) # (N, L, 2), +1e-4 to avoid zero depth # Covisible Check h, w = depth1.shape[1:3] covisible_mask = ( (w_kpts0[:, :, 0] > 0) * (w_kpts0[:, :, 0] < w - 1) * (w_kpts0[:, :, 1] > 0) * (w_kpts0[:, :, 1] < h - 1) ) w_kpts0 = torch.stack( (2 * w_kpts0[..., 0] / w - 1, 2 * w_kpts0[..., 1] / h - 1), dim=-1 ) # from [0.5,h-0.5] -> [-1+1/h, 1-1/h] # w_kpts0[~covisible_mask, :] = -5 # xd w_kpts0_depth = F.grid_sample( depth1[:, None], w_kpts0[:, :, None], mode="bilinear" )[:, 0, :, 0] consistent_mask = ( (w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth ).abs() < 0.05 valid_mask = nonzero_mask * covisible_mask * consistent_mask return valid_mask, w_kpts0 imagenet_mean = torch.tensor([0.485, 0.456, 0.406]).to(device) imagenet_std = torch.tensor([0.229, 0.224, 0.225]).to(device) def numpy_to_pil(x: np.ndarray): """ Args: x: Assumed to be of shape (h,w,c) """ if isinstance(x, torch.Tensor): x = x.detach().cpu().numpy() if x.max() <= 1.01: x *= 255 x = x.astype(np.uint8) return Image.fromarray(x) def tensor_to_pil(x, unnormalize=False): if unnormalize: x = x * imagenet_std[:, None, None] + imagenet_mean[:, None, None] x = x.detach().permute(1, 2, 0).cpu().numpy() x = np.clip(x, 0.0, 1.0) return numpy_to_pil(x) def to_cuda(batch): for key, value in batch.items(): if isinstance(value, torch.Tensor): batch[key] = value.to(device) return batch def to_cpu(batch): for key, value in batch.items(): if isinstance(value, torch.Tensor): batch[key] = value.cpu() return batch def get_pose(calib): w, h = np.array(calib["imsize"])[0] return np.array(calib["K"]), np.array(calib["R"]), np.array(calib["T"]).T, h, w def compute_relative_pose(R1, t1, R2, t2): rots = R2 @ (R1.T) trans = -rots @ t1 + t2 return rots, trans