from pathlib import Path import argparse import cv2 import matplotlib.cm as cm import torch import numpy as np from utils.nnmatching import NNMatching from utils.misc import (AverageTimer, VideoStreamer, make_matching_plot_fast, frame2tensor) torch.set_grad_enabled(False) def compute_essential(matched_kp1, matched_kp2, K): pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) K_1 = np.eye(3) # Estimate the homography between the matches using RANSAC ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000) if ransac_inliers is None or ransac_model.shape != (3,3): ransac_inliers = np.array([]) ransac_model = None return ransac_model, ransac_inliers, pts1, pts2 sizer = (960, 640) focallength_x = 4.504986436499113e+03/(6744/sizer[0]) focallength_y = 4.513311442889859e+03/(4502/sizer[1]) K = np.eye(3) K[0,0] = focallength_x K[1,1] = focallength_y K[0,2] = 3.363322177533149e+03/(6744/sizer[0])# * 0.5 K[1,2] = 2.291824660547715e+03/(4502/sizer[1])# * 0.5 if __name__ == '__main__': parser = argparse.ArgumentParser( description='DarkFeat demo', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '--input', type=str, help='path to an image directory') parser.add_argument( '--output_dir', type=str, default=None, help='Directory where to write output frames (If None, no output)') parser.add_argument( '--image_glob', type=str, nargs='+', default=['*.ARW'], help='Glob if a directory of images is specified') parser.add_argument( '--resize', type=int, nargs='+', default=[640, 480], help='Resize the input image before running inference. If two numbers, ' 'resize to the exact dimensions, if one number, resize the max ' 'dimension, if -1, do not resize') parser.add_argument( '--force_cpu', action='store_true', help='Force pytorch to run in CPU mode.') parser.add_argument('--model_path', type=str, help='Path to the pretrained model') opt = parser.parse_args() print(opt) assert len(opt.resize) == 2 print('Will resize to {}x{} (WxH)'.format(opt.resize[0], opt.resize[1])) device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu' print('Running inference on device \"{}\"'.format(device)) matching = NNMatching(opt.model_path).eval().to(device) keys = ['keypoints', 'scores', 'descriptors'] vs = VideoStreamer(opt.input, opt.resize, opt.image_glob) frame, ret = vs.next_frame() assert ret, 'Error when reading the first frame (try different --input?)' frame_tensor = frame2tensor(frame, device) last_data = matching.darkfeat({'image': frame_tensor}) last_data = {k+'0': [last_data[k]] for k in keys} last_data['image0'] = frame_tensor last_frame = frame last_image_id = 0 if opt.output_dir is not None: print('==> Will write outputs to {}'.format(opt.output_dir)) Path(opt.output_dir).mkdir(exist_ok=True) timer = AverageTimer() while True: frame, ret = vs.next_frame() if not ret: print('Finished demo_darkfeat.py') break timer.update('data') stem0, stem1 = last_image_id, vs.i - 1 frame_tensor = frame2tensor(frame, device) pred = matching({**last_data, 'image1': frame_tensor}) kpts0 = last_data['keypoints0'][0].cpu().numpy() kpts1 = pred['keypoints1'][0].cpu().numpy() matches = pred['matches0'][0].cpu().numpy() confidence = pred['matching_scores0'][0].cpu().numpy() timer.update('forward') valid = matches > -1 mkpts0 = kpts0[valid] mkpts1 = kpts1[matches[valid]] E, inliers, pts1, pts2 = compute_essential(mkpts0, mkpts1, K) color = cm.jet(np.clip(confidence[valid][inliers[:, 0].astype('bool')] * 2 - 1, -1, 1)) text = [ 'DarkFeat', 'Matches: {}'.format(inliers.sum()) ] out = make_matching_plot_fast( last_frame, frame, mkpts0[inliers[:, 0].astype('bool')], mkpts1[inliers[:, 0].astype('bool')], color, text, path=None, small_text=' ') if opt.output_dir is not None: stem = 'matches_{:06}_{:06}'.format(stem0, stem1) out_file = str(Path(opt.output_dir, stem + '.png')) print('Writing image to {}'.format(out_file)) cv2.imwrite(out_file, out)