import os import glob import pickle from posixpath import basename import numpy as np import h5py from .base_dumper import BaseDumper import sys ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")) sys.path.insert(0, ROOT_DIR) import utils class scannet(BaseDumper): def get_seqs(self): self.pair_list=np.loadtxt('../assets/scannet_eval_list.txt',dtype=str) self.seq_list=np.unique(np.asarray([path.split('/')[0] for path in self.pair_list[:,0]],dtype=str)) self.dump_seq,self.img_seq=[],[] for seq in self.seq_list: dump_dir=os.path.join(self.config['feature_dump_dir'],seq) cur_img_seq=glob.glob(os.path.join(os.path.join(self.config['rawdata_dir'],seq,'img','*.jpg'))) cur_dump_seq=[os.path.join(dump_dir,path.split('/')[-1])+'_'+self.config['extractor']['name']+'_'+str(self.config['extractor']['num_kpt'])\ +'.hdf5' for path in cur_img_seq] self.img_seq+=cur_img_seq self.dump_seq+=cur_dump_seq def format_dump_folder(self): if not os.path.exists(self.config['feature_dump_dir']): os.mkdir(self.config['feature_dump_dir']) for seq in self.seq_list: seq_dir=os.path.join(self.config['feature_dump_dir'],seq) if not os.path.exists(seq_dir): os.mkdir(seq_dir) def format_dump_data(self): print('Formatting data...') self.data={'K1':[],'K2':[],'R':[],'T':[],'e':[],'f':[],'fea_path1':[],'fea_path2':[],'img_path1':[],'img_path2':[]} for pair in self.pair_list: img_path1,img_path2=pair[0],pair[1] seq=img_path1.split('/')[0] index1,index2=int(img_path1.split('/')[-1][:-4]),int(img_path2.split('/')[-1][:-4]) ex1,ex2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index1)+'.txt'),dtype=float),\ np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'extrinsic',str(index2)+'.txt'),dtype=float) K1,K2=np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index1)+'.txt'),dtype=float),\ np.loadtxt(os.path.join(self.config['rawdata_dir'],seq,'intrinsic',str(index2)+'.txt'),dtype=float) relative_extrinsic=np.matmul(np.linalg.inv(ex2),ex1) dR,dt=relative_extrinsic[:3,:3],relative_extrinsic[:3,3] dt /= np.sqrt(np.sum(dt**2)) e_gt_unnorm = np.reshape(np.matmul( np.reshape(utils.evaluation_utils.np_skew_symmetric(dt.astype('float64').reshape(1, 3)), (3, 3)), np.reshape(dR.astype('float64'), (3, 3))), (3, 3)) e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm) f_gt_unnorm=np.linalg.inv(K2.T)@e_gt@np.linalg.inv(K1) f_gt = f_gt_unnorm / np.linalg.norm(f_gt_unnorm) self.data['K1'].append(K1),self.data['K2'].append(K2) self.data['R'].append(dR),self.data['T'].append(dt) self.data['e'].append(e_gt),self.data['f'].append(f_gt) dump_seq_dir=os.path.join(self.config['feature_dump_dir'],seq) fea_path1,fea_path2=os.path.join(dump_seq_dir,img_path1.split('/')[-1]+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5'),\ os.path.join(dump_seq_dir,img_path2.split('/')[-1]+'_'+self.config['extractor']['name'] +'_'+str(self.config['extractor']['num_kpt'])+'.hdf5') self.data['img_path1'].append(img_path1),self.data['img_path2'].append(img_path2) self.data['fea_path1'].append(fea_path1),self.data['fea_path2'].append(fea_path2) self.form_standard_dataset()