import sys from pathlib import Path import subprocess import logging import torch from PIL import Image from ..utils.base_model import BaseModel import torchvision.transforms as transforms dedode_path = Path(__file__).parent / "../../third_party/DeDoDe" sys.path.append(str(dedode_path)) from DeDoDe import dedode_detector_L, dedode_descriptor_B from DeDoDe.utils import to_pixel_coords device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger = logging.getLogger(__name__) class DeDoDe(BaseModel): default_conf = { "name": "dedode", "model_detector_name": "dedode_detector_L.pth", "model_descriptor_name": "dedode_descriptor_B.pth", "max_keypoints": 2000, "match_threshold": 0.2, "dense": False, # Now fixed to be false } required_inputs = [ "image", ] weight_urls = { "dedode_detector_L.pth": "https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_detector_L.pth", "dedode_descriptor_B.pth": "https://github.com/Parskatt/DeDoDe/releases/download/dedode_pretrained_models/dedode_descriptor_B.pth", } # Initialize the line matcher def _init(self, conf): model_detector_path = dedode_path / "pretrained" / conf["model_detector_name"] model_descriptor_path = ( dedode_path / "pretrained" / conf["model_descriptor_name"] ) self.normalizer = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) # Download the model. if not model_detector_path.exists(): model_detector_path.parent.mkdir(exist_ok=True) link = self.weight_urls[conf["model_detector_name"]] cmd = ["wget", link, "-O", str(model_detector_path)] logger.info(f"Downloading the DeDoDe detector model with `{cmd}`.") subprocess.run(cmd, check=True) if not model_descriptor_path.exists(): model_descriptor_path.parent.mkdir(exist_ok=True) link = self.weight_urls[conf["model_descriptor_name"]] cmd = ["wget", link, "-O", str(model_descriptor_path)] logger.info(f"Downloading the DeDoDe descriptor model with `{cmd}`.") subprocess.run(cmd, check=True) logger.info(f"Loading DeDoDe model...") # load the model weights_detector = torch.load(model_detector_path, map_location="cpu") weights_descriptor = torch.load(model_descriptor_path, map_location="cpu") self.detector = dedode_detector_L(weights=weights_detector, device = device) self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device = device) logger.info(f"Load DeDoDe model done.") def _forward(self, data): """ data: dict, keys: {'image0','image1'} image shape: N x C x H x W color mode: RGB """ img0 = self.normalizer(data["image"].squeeze()).float()[None] H_A, W_A = img0.shape[2:] # step 1: detect keypoints detections_A = None batch_A = {"image": img0} if self.conf["dense"]: detections_A = self.detector.detect_dense(batch_A) else: detections_A = self.detector.detect( batch_A, num_keypoints=self.conf["max_keypoints"] ) keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"] # step 2: describe keypoints # dim: 1 x N x 256 description_A = self.descriptor.describe_keypoints(batch_A, keypoints_A)[ "descriptions" ] keypoints_A = to_pixel_coords(keypoints_A, H_A, W_A) return { "keypoints": keypoints_A, # 1 x N x 2 "descriptors": description_A.permute(0, 2, 1), # 1 x 256 x N "scores": P_A, # 1 x N }