import numpy as np import os, time, random import argparse import json import torch.nn.functional as F import torch from torch.utils.data import Dataset, DataLoader from torch.optim import lr_scheduler from model.model import InvISPNet from dataset.FiveK_dataset import FiveKDatasetTrain from config.config import get_arguments from utils.JPEG import DiffJPEG os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp') os.environ['CUDA_VISIBLE_DEVICES'] = str(np.argmax([int(x.split()[2]) for x in open('tmp', 'r').readlines()])) # os.environ['CUDA_VISIBLE_DEVICES'] = "1" os.system('rm tmp') DiffJPEG = DiffJPEG(differentiable=True, quality=90).cuda() parser = get_arguments() parser.add_argument("--out_path", type=str, default="./exps/", help="Path to save checkpoint. ") parser.add_argument("--resume", dest='resume', action='store_true', help="Resume training. ") parser.add_argument("--loss", type=str, default="L1", choices=["L1", "L2"], help="Choose which loss function to use. ") parser.add_argument("--lr", type=float, default=0.0001, help="Learning rate") parser.add_argument("--aug", dest='aug', action='store_true', help="Use data augmentation.") args = parser.parse_args() print("Parsed arguments: {}".format(args)) os.makedirs(args.out_path, exist_ok=True) os.makedirs(args.out_path+"%s"%args.task, exist_ok=True) os.makedirs(args.out_path+"%s/checkpoint"%args.task, exist_ok=True) with open(args.out_path+"%s/commandline_args.yaml"%args.task , 'w') as f: json.dump(args.__dict__, f, indent=2) def main(args): # ======================================define the model====================================== net = InvISPNet(channel_in=3, channel_out=3, block_num=8) net.cuda() # load the pretrained weight if there exists one if args.resume: net.load_state_dict(torch.load(args.out_path+"%s/checkpoint/latest.pth"%args.task)) print("[INFO] loaded " + args.out_path+"%s/checkpoint/latest.pth"%args.task) optimizer = torch.optim.Adam(net.parameters(), lr=args.lr) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[50, 80], gamma=0.5) print("[INFO] Start data loading and preprocessing") RAWDataset = FiveKDatasetTrain(opt=args) dataloader = DataLoader(RAWDataset, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True) print("[INFO] Start to train") step = 0 for epoch in range(0, 300): epoch_time = time.time() for i_batch, sample_batched in enumerate(dataloader): step_time = time.time() input, target_rgb, target_raw = sample_batched['input_raw'].cuda(), sample_batched['target_rgb'].cuda(), \ sample_batched['target_raw'].cuda() reconstruct_rgb = net(input) reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1) rgb_loss = F.l1_loss(reconstruct_rgb, target_rgb) reconstruct_rgb = DiffJPEG(reconstruct_rgb) reconstruct_raw = net(reconstruct_rgb, rev=True) raw_loss = F.l1_loss(reconstruct_raw, target_raw) loss = args.rgb_weight * rgb_loss + raw_loss optimizer.zero_grad() loss.backward() optimizer.step() print("task: %s Epoch: %d Step: %d || loss: %.5f raw_loss: %.5f rgb_loss: %.5f || lr: %f time: %f"%( args.task, epoch, step, loss.detach().cpu().numpy(), raw_loss.detach().cpu().numpy(), rgb_loss.detach().cpu().numpy(), optimizer.param_groups[0]['lr'], time.time()-step_time )) step += 1 torch.save(net.state_dict(), args.out_path+"%s/checkpoint/latest.pth"%args.task) if (epoch+1) % 10 == 0: # os.makedirs(args.out_path+"%s/checkpoint/%04d"%(args.task,epoch), exist_ok=True) torch.save(net.state_dict(), args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch)) print("[INFO] Successfully saved "+args.out_path+"%s/checkpoint/%04d.pth"%(args.task,epoch)) scheduler.step() print("[INFO] Epoch time: ", time.time()-epoch_time, "task: ", args.task) if __name__ == '__main__': torch.set_num_threads(4) main(args)