import torch import torch.nn as nn from .reliability_loss import APLoss class MultiPixelAPLoss (nn.Module): """ Computes the pixel-wise AP loss: Given two images and ground-truth optical flow, computes the AP per pixel. feat1: (B, C, H, W) pixel-wise features extracted from img1 feat2: (B, C, H, W) pixel-wise features extracted from img2 aflow: (B, 2, H, W) absolute flow: aflow[...,y1,x1] = x2,y2 """ def __init__(self, sampler, nq=20): nn.Module.__init__(self) self.aploss = APLoss(nq, min=0, max=1, euc=False) self.sampler = sampler self.base = 0.25 self.dec_base = 0.20 def loss_from_ap(self, ap, rel, noise_ap, noise_rel): dec_ap = torch.clamp(ap - noise_ap, min=0, max=1) return (1 - ap*noise_rel - (1-noise_rel)*self.base), (1. - dec_ap*(1-noise_rel) - noise_rel*self.dec_base) def forward(self, feat0, feat1, noise_feat0, noise_feat1, conf0, conf1, noise_conf0, noise_conf1, pos0, pos1, B, H, W, N=1500): # subsample things scores, noise_scores, gt, msk, qconf, noise_qconf = self.sampler(feat0, feat1, noise_feat0, noise_feat1, \ conf0, conf1, noise_conf0, noise_conf1, pos0, pos1, B, H, W, N=1500) # compute pixel-wise AP n = qconf.numel() if n == 0: return 0, 0 scores, noise_scores, gt = scores.view(n,-1), noise_scores, gt.view(n,-1) ap = self.aploss(scores, gt).view(msk.shape) noise_ap = self.aploss(noise_scores, gt).view(msk.shape) pixel_loss = self.loss_from_ap(ap, qconf, noise_ap, noise_qconf) loss = pixel_loss[0][msk].mean(), pixel_loss[1][msk].mean() return loss