import argparse import cv2 import numpy as np import os import math import subprocess from tqdm import tqdm def compute_essential(matched_kp1, matched_kp2, K): pts1 = cv2.undistortPoints(matched_kp1,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) pts2 = cv2.undistortPoints(matched_kp2,cameraMatrix=K, distCoeffs = (-0.117918271740560,0.075246403574314,0,0)) K_1 = np.eye(3) # Estimate the homography between the matches using RANSAC ransac_model, ransac_inliers = cv2.findEssentialMat(pts1, pts2, K_1, method=cv2.RANSAC, prob=0.999, threshold=0.001, maxIters=10000) if ransac_inliers is None or ransac_model.shape != (3,3): ransac_inliers = np.array([]) ransac_model = None return ransac_model, ransac_inliers, pts1, pts2 def compute_error(R_GT,t_GT,E,pts1_norm, pts2_norm, inliers): """Compute the angular error between two rotation matrices and two translation vectors. Keyword arguments: R -- 2D numpy array containing an estimated rotation gt_R -- 2D numpy array containing the corresponding ground truth rotation t -- 2D numpy array containing an estimated translation as column gt_t -- 2D numpy array containing the corresponding ground truth translation """ inliers = inliers.ravel() R = np.eye(3) t = np.zeros((3,1)) sst = True try: _, R, t, _ = cv2.recoverPose(E, pts1_norm, pts2_norm, np.eye(3), inliers) except: sst = False # calculate angle between provided rotations # if sst: dR = np.matmul(R, np.transpose(R_GT)) dR = cv2.Rodrigues(dR)[0] dR = np.linalg.norm(dR) * 180 / math.pi # calculate angle between provided translations dT = float(np.dot(t_GT.T, t)) dT /= float(np.linalg.norm(t_GT)) if dT > 1 or dT < -1: print("Domain warning! dT:",dT) dT = max(-1,min(1,dT)) dT = math.acos(dT) * 180 / math.pi dT = np.minimum(dT, 180 - dT) # ambiguity of E estimation else: dR, dT = 180.0, 180.0 return dR, dT def pose_evaluation(result_base_dir, dark_name1, dark_name2, enhancer, K, R_GT, t_GT): try: m_kp1 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_1/'+dark_name1) m_kp2 = np.load(result_base_dir+enhancer+'/DarkFeat/POINT_2/'+dark_name2) except: return 180.0, 180.0 try: E, inliers, pts1, pts2 = compute_essential(m_kp1, m_kp2, K) except: E, inliers, pts1, pts2 = np.zeros((3, 3)), np.array([]), None, None dR, dT = compute_error(R_GT, t_GT, E, pts1, pts2, inliers) return dR, dT if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--histeq', action='store_true') parser.add_argument('--dataset_dir', type=str, default='/data/hyz/MID/') opt = parser.parse_args() sizer = (960, 640) focallength_x = 4.504986436499113e+03/(6744/sizer[0]) focallength_y = 4.513311442889859e+03/(4502/sizer[1]) K = np.eye(3) K[0,0] = focallength_x K[1,1] = focallength_y K[0,2] = 3.363322177533149e+03/(6744/sizer[0]) K[1,2] = 2.291824660547715e+03/(4502/sizer[1]) Kinv = np.linalg.inv(K) Kinvt = np.transpose(Kinv) PE_MT = np.zeros((6, 8)) enhancer = 'None' if not opt.histeq else 'HistEQ' for scene in ['Indoor', 'Outdoor']: dir_base = opt.dataset_dir + '/' + scene + '/' base_save = 'result_errors/' + scene + '/' pair_list = sorted(os.listdir(dir_base)) os.makedirs(base_save, exist_ok=True) for pair in tqdm(pair_list): opention = 1 if scene == 'Outdoor': pass else: if int(pair[4::]) <= 17: opention = 0 else: pass name = [] files = sorted(os.listdir(dir_base+pair)) for file_ in files: if file_.endswith('.cr2'): name.append(file_[0:9]) ISO = ['00100', '00200', '00400', '00800', '01600', '03200', '06400', '12800'] if opention == 1: Shutter_speed = ['0.005','0.01','0.025','0.05','0.17','0.5'] else: Shutter_speed = ['0.01','0.02','0.05','0.1','0.3','1'] E_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'E_estimated.npy') F_GT = np.dot(np.dot(Kinvt,E_GT),Kinv) R_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'R_GT.npy') t_GT = np.load(dir_base+pair+'/GT_Correspondence/'+'T_GT.npy') result_base_dir ='result/' +scene+'/'+pair+'/' for iso in ISO: for ex in Shutter_speed: dark_name1 = name[0]+iso+'_'+ex+'_'+scene+'.npy' dark_name2 = name[1]+iso+'_'+ex+'_'+scene+'.npy' dr, dt = pose_evaluation(result_base_dir,dark_name1,dark_name2,enhancer,K,R_GT,t_GT) PE_MT[Shutter_speed.index(ex),ISO.index(iso)] = max(dr, dt) subprocess.check_output(['mkdir', '-p', base_save + pair + f'/{enhancer}/']) np.save(base_save + pair + f'/{enhancer}/Pose_error_DarkFeat.npy', PE_MT)