import torch from .nn import NN2 from darkfeat import DarkFeat class NNMatching(torch.nn.Module): def __init__(self, model_path=''): super().__init__() self.nn = NN2().eval() self.darkfeat = DarkFeat(model_path).eval() def forward(self, data): """ Run DarkFeat and nearest neighborhood matching Args: data: dictionary with minimal keys: ['image0', 'image1'] """ pred = {} # Extract DarkFeat (keypoints, scores, descriptors) if 'keypoints0' not in data: pred0 = self.darkfeat({'image': data['image0']}) # print({k+'0': v[0].shape for k, v in pred0.items()}) pred = {**pred, **{k+'0': [v] for k, v in pred0.items()}} if 'keypoints1' not in data: pred1 = self.darkfeat({'image': data['image1']}) pred = {**pred, **{k+'1': [v] for k, v in pred1.items()}} # Batch all features # We should either have i) one image per batch, or # ii) the same number of local features for all images in the batch. data = {**data, **pred} for k in data: if isinstance(data[k], (list, tuple)): data[k] = torch.stack(data[k]) # Perform the matching pred = {**pred, **self.nn(data)} return pred