from typing import Tuple import numpy as np import torch def to_homogeneous(points): """Convert N-dimensional points to homogeneous coordinates. Args: points: torch.Tensor or numpy.ndarray with size (..., N). Returns: A torch.Tensor or numpy.ndarray with size (..., N+1). """ if isinstance(points, torch.Tensor): pad = points.new_ones(points.shape[:-1] + (1,)) return torch.cat([points, pad], dim=-1) elif isinstance(points, np.ndarray): pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) return np.concatenate([points, pad], axis=-1) else: raise ValueError def from_homogeneous(points, eps=0.): """Remove the homogeneous dimension of N-dimensional points. Args: points: torch.Tensor or numpy.ndarray with size (..., N+1). Returns: A torch.Tensor or numpy ndarray with size (..., N). """ return points[..., :-1] / (points[..., -1:] + eps) def skew_symmetric(v): """Create a skew-symmetric matrix from a (batched) vector of size (..., 3). """ z = torch.zeros_like(v[..., 0]) M = torch.stack([ z, -v[..., 2], v[..., 1], v[..., 2], z, -v[..., 0], -v[..., 1], v[..., 0], z, ], dim=-1).reshape(v.shape[:-1] + (3, 3)) return M def T_to_E(T): """Convert batched poses (..., 4, 4) to batched essential matrices.""" return skew_symmetric(T[..., :3, 3]) @ T[..., :3, :3] def warp_points_torch(points, H, inverse=True): """ Warp a list of points with the INVERSE of the given homography. The inverse is used to be coherent with tf.contrib.image.transform Arguments: points: batched list of N points, shape (B, N, 2). homography: batched or not (shapes (B, 8) and (8,) respectively). Returns: a Tensor of shape (B, N, 2) containing the new coordinates of the warped points. """ # H = np.expand_dims(homography, axis=0) if len(homography.shape) == 1 else homography # Get the points to the homogeneous format points = to_homogeneous(points) # Apply the homography out_shape = tuple(list(H.shape[:-1]) + [3, 3]) H_mat = torch.cat([H, torch.ones_like(H[..., :1])], axis=-1).reshape(out_shape) if inverse: H_mat = torch.inverse(H_mat) warped_points = torch.einsum('...nj,...ji->...ni', points, H_mat.transpose(-2, -1)) warped_points = from_homogeneous(warped_points, eps=1e-5) return warped_points def seg_equation(segs): # calculate list of start, end and midpoints points from both lists start_points, end_points = to_homogeneous(segs[..., 0, :]), to_homogeneous(segs[..., 1, :]) # Compute the line equations as ax + by + c = 0 , where x^2 + y^2 = 1 lines = torch.cross(start_points, end_points, dim=-1) lines_norm = (torch.sqrt(lines[..., 0] ** 2 + lines[..., 1] ** 2)[..., None]) assert torch.all(lines_norm > 0), 'Error: trying to compute the equation of a line with a single point' lines = lines / lines_norm return lines def is_inside_img(pts: torch.Tensor, img_shape: Tuple[int, int]): h, w = img_shape return (pts >= 0).all(dim=-1) & (pts[..., 0] < w) & (pts[..., 1] < h) & (~torch.isinf(pts).any(dim=-1)) def shrink_segs_to_img(segs: torch.Tensor, img_shape: Tuple[int, int]) -> torch.Tensor: """ Shrink an array of segments to fit inside the image. :param segs: The tensor of segments with shape (N, 2, 2) :param img_shape: The image shape in format (H, W) """ EPS = 1e-4 device = segs.device w, h = img_shape[1], img_shape[0] # Project the segments to the reference image segs = segs.clone() eqs = seg_equation(segs) x0, y0 = torch.tensor([1., 0, 0.], device=device), torch.tensor([0., 1, 0], device=device) x0 = x0.repeat(eqs.shape[:-1] + (1,)) y0 = y0.repeat(eqs.shape[:-1] + (1,)) pt_x0s = torch.cross(eqs, x0, dim=-1) pt_x0s = pt_x0s[..., :-1] / pt_x0s[..., None, -1] pt_x0s_valid = is_inside_img(pt_x0s, img_shape) pt_y0s = torch.cross(eqs, y0, dim=-1) pt_y0s = pt_y0s[..., :-1] / pt_y0s[..., None, -1] pt_y0s_valid = is_inside_img(pt_y0s, img_shape) xW, yH = torch.tensor([1., 0, EPS - w], device=device), torch.tensor([0., 1, EPS - h], device=device) xW = xW.repeat(eqs.shape[:-1] + (1,)) yH = yH.repeat(eqs.shape[:-1] + (1,)) pt_xWs = torch.cross(eqs, xW, dim=-1) pt_xWs = pt_xWs[..., :-1] / pt_xWs[..., None, -1] pt_xWs_valid = is_inside_img(pt_xWs, img_shape) pt_yHs = torch.cross(eqs, yH, dim=-1) pt_yHs = pt_yHs[..., :-1] / pt_yHs[..., None, -1] pt_yHs_valid = is_inside_img(pt_yHs, img_shape) # If the X coordinate of the first endpoint is out mask = (segs[..., 0, 0] < 0) & pt_x0s_valid segs[mask, 0, :] = pt_x0s[mask] mask = (segs[..., 0, 0] > (w - 1)) & pt_xWs_valid segs[mask, 0, :] = pt_xWs[mask] # If the X coordinate of the second endpoint is out mask = (segs[..., 1, 0] < 0) & pt_x0s_valid segs[mask, 1, :] = pt_x0s[mask] mask = (segs[:, 1, 0] > (w - 1)) & pt_xWs_valid segs[mask, 1, :] = pt_xWs[mask] # If the Y coordinate of the first endpoint is out mask = (segs[..., 0, 1] < 0) & pt_y0s_valid segs[mask, 0, :] = pt_y0s[mask] mask = (segs[..., 0, 1] > (h - 1)) & pt_yHs_valid segs[mask, 0, :] = pt_yHs[mask] # If the Y coordinate of the second endpoint is out mask = (segs[..., 1, 1] < 0) & pt_y0s_valid segs[mask, 1, :] = pt_y0s[mask] mask = (segs[..., 1, 1] > (h - 1)) & pt_yHs_valid segs[mask, 1, :] = pt_yHs[mask] assert torch.all(segs >= 0) and torch.all(segs[..., 0] < w) and torch.all(segs[..., 1] < h) return segs def warp_lines_torch(lines, H, inverse=True, dst_shape: Tuple[int, int] = None) -> Tuple[torch.Tensor, torch.Tensor]: """ :param lines: A tensor of shape (B, N, 2, 2) where B is the batch size, N the number of lines. :param H: The homography used to convert the lines. batched or not (shapes (B, 8) and (8,) respectively). :param inverse: Whether to apply H or the inverse of H :param dst_shape:If provided, lines are trimmed to be inside the image """ device = lines.device batch_size, n = lines.shape[:2] lines = warp_points_torch(lines.reshape(batch_size, -1, 2), H, inverse).reshape(lines.shape) if dst_shape is None: return lines, torch.ones(lines.shape[:-2], dtype=torch.bool, device=device) out_img = torch.any((lines < 0) | (lines >= torch.tensor(dst_shape[::-1], device=device)), -1) valid = ~out_img.all(-1) any_out_of_img = out_img.any(-1) lines_to_trim = valid & any_out_of_img for b in range(batch_size): lines_to_trim_mask_b = lines_to_trim[b] lines_to_trim_b = lines[b][lines_to_trim_mask_b] corrected_lines = shrink_segs_to_img(lines_to_trim_b, dst_shape) lines[b][lines_to_trim_mask_b] = corrected_lines return lines, valid