# Copyright 2019-present NAVER Corp. # CC BY-NC-SA 3.0 # Available only for non-commercial use import pdb import torch.nn as nn import torch.nn.functional as F from nets.ap_loss import APLoss class PixelAPLoss (nn.Module): """ Computes the pixel-wise AP loss: Given two images and ground-truth optical flow, computes the AP per pixel. feat1: (B, C, H, W) pixel-wise features extracted from img1 feat2: (B, C, H, W) pixel-wise features extracted from img2 aflow: (B, 2, H, W) absolute flow: aflow[...,y1,x1] = x2,y2 """ def __init__(self, sampler, nq=20): nn.Module.__init__(self) self.aploss = APLoss(nq, min=0, max=1, euc=False) self.name = 'pixAP' self.sampler = sampler def loss_from_ap(self, ap, rel): return 1 - ap def forward(self, descriptors, aflow, **kw): # subsample things scores, gt, msk, qconf = self.sampler(descriptors, kw.get('reliability'), aflow) # compute pixel-wise AP n = qconf.numel() if n == 0: return 0 scores, gt = scores.view(n,-1), gt.view(n,-1) ap = self.aploss(scores, gt).view(msk.shape) pixel_loss = self.loss_from_ap(ap, qconf) loss = pixel_loss[msk].mean() return loss class ReliabilityLoss (PixelAPLoss): """ same than PixelAPLoss, but also train a pixel-wise confidence that this pixel is going to have a good AP. """ def __init__(self, sampler, base=0.5, **kw): PixelAPLoss.__init__(self, sampler, **kw) assert 0 <= base < 1 self.base = base self.name = 'reliability' def loss_from_ap(self, ap, rel): return 1 - ap*rel - (1-rel)*self.base