File size: 6,757 Bytes
2bb21bd 2d61ea6 f6bb466 16ca3cf b3c49d3 16ca3cf 2bb21bd 93e6bc9 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd ef7492c 2bb21bd 93e6bc9 d21b068 93e6bc9 adcf5f6 93e6bc9 2bb21bd ca0ea4c c97092f 95b7524 2bb21bd ca0ea4c eddc0ef 2bb21bd 16ca3cf 2bb21bd 1678c48 2bb21bd de05f69 2bb21bd 16ca3cf 2bb21bd adb2981 36206e3 adb2981 2d61ea6 adb2981 16ca3cf 2bb21bd 16ca3cf adb2981 2bb21bd 4d300d7 6dfd871 4d300d7 2bb21bd 4df9c3c 2bb21bd 57f1b5a c9f12d5 4df9c3c adb2981 4df9c3c 16ca3cf d83c819 16ca3cf aceed58 3114537 d83c819 16ca3cf 2bb21bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
from gradio_client import Client
import os
import json
import re
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip
hf_token = os.environ.get("HF_TKN")
def extract_audio(video_in):
input_video = video_in
output_audio = 'audio.wav'
# Open the video file and extract the audio
video_clip = VideoFileClip(input_video)
audio_clip = video_clip.audio
# Save the audio as a .wav file
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
print("Audio extraction complete.")
return 'audio.wav'
def get_caption_from_kosmos(image_in):
kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")
kosmos2_result = kosmos2_client.predict(
image_in, # str (filepath or URL to image) in 'Test Image' Image component
"Detailed", # str in 'Description Type' Radio component
fn_index=4
)
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
with open(kosmos2_result[1], 'r') as f:
data = json.load(f)
reconstructed_sentence = []
for sublist in data:
reconstructed_sentence.append(sublist[0])
full_sentence = ' '.join(reconstructed_sentence)
#print(full_sentence)
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
pattern = r'^Describe this image in detail:\s*(.*)$'
# Apply the regex pattern to extract the description text.
match = re.search(pattern, full_sentence)
if match:
description = match.group(1)
print(description)
else:
print("Unable to locate valid description.")
# Find the last occurrence of "."
last_period_index = description.rfind('.')
# Truncate the string up to the last period
truncated_caption = description[:last_period_index + 1]
# print(truncated_caption)
print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
return truncated_caption
def get_caption(image_in):
client = Client("https://fffiloni-moondream1.hf.space/", hf_token=hf_token)
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe precisely the image in one sentence.", # str in 'Question' Textbox component
#api_name="/answer_question"
api_name="/predict"
)
print(result)
return result
def get_magnet(prompt):
amended_prompt = f"{prompt}"
print(amended_prompt)
client = Client("https://fffiloni-magnet.hf.space/")
result = client.predict(
"facebook/audio-magnet-medium", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
"", # str in 'Model Path (custom models)' Textbox component
amended_prompt, # str in 'Input Text' Textbox component
3, # float in 'Temperature' Number component
0.9, # float in 'Top-p' Number component
10, # float in 'Max CFG coefficient' Number component
1, # float in 'Min CFG coefficient' Number component
20, # float in 'Decoding Steps (stage 1)' Number component
10, # float in 'Decoding Steps (stage 2)' Number component
10, # float in 'Decoding Steps (stage 3)' Number component
10, # float in 'Decoding Steps (stage 4)' Number component
"prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
api_name="/predict_full"
)
print(result)
return result[1]
def get_audioldm(prompt):
client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
result = client.predict(
prompt, # str in 'Input text' Textbox component
"Low quality. Music.", # str in 'Negative prompt' Textbox component
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
3.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
45, # int | float in 'Seed' Number component
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
fn_index=1
)
print(result)
audio_result = extract_audio(result)
return audio_result
def get_audiogen(prompt):
client = Client("https://fffiloni-audiogen.hf.space/")
result = client.predict(
prompt,
10,
api_name="/infer"
)
return result
def get_tango(prompt):
try:
client = Client("https://declare-lab-tango.hf.space/")
except:
raise gr.Error("Tango space API is not ready, please try again in few minutes ")
result = client.predict(
prompt, # str representing string value in 'Prompt' Textbox component
100, # int | float representing numeric value between 100 and 200 in 'Steps' Slider component
4, # int | float representing numeric value between 1 and 10 in 'Guidance Scale' Slider component
api_name="/predict"
)
print(result)
return result
def infer(image_in, chosen_model):
caption = get_caption(image_in)
if chosen_model == "MAGNet" :
magnet_result = get_magnet(caption)
return magnet_result
elif chosen_model == "AudioLDM-2" :
audioldm_result = get_audioldm(caption)
return audioldm_result
elif chosen_model == "AudioGen" :
audiogen_result = get_audiogen(caption)
return audiogen_result
elif chosen_model == "Tango" :
tango_result = get_tango(caption)
return tango_result
css="""
#col-container{
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">
Image to SFX
</h2>
<p style="text-align: center;">
Compare MAGNet, AudioLDM2 and AudioGen sound effects generation from image caption.
</p>
""")
with gr.Column():
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
with gr.Row():
chosen_model = gr.Dropdown(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen", "Tango"], value="AudioLDM-2")
submit_btn = gr.Button("Submit")
with gr.Column():
audio_o = gr.Audio(label="Audio output")
submit_btn.click(
fn=infer,
inputs=[image_in, chosen_model],
outputs=[audio_o],
concurrency_limit = 2
)
demo.queue(max_size=10).launch(debug=True) |