File size: 3,509 Bytes
0b37ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4606acd
0b37ed1
 
 
 
 
 
 
 
 
 
 
 
6bf7939
0b37ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56da93a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import openai

os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"]
os.environ["GROQ_API_KEY"]

global agent


def create_agent():

    from langchain_groq import ChatGroq
    from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
    from langchain.chains import ConversationChain

    global agent

    llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
    memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=1000)
    agent = ConversationChain(llm=llm, memory=memory, verbose=True)

    return "Successful!"


def formatted_response(docs, question, response, state):

    formatted_output = response + "\n\nSources"

    for i, doc in enumerate(docs):
        source_info = doc.metadata.get("source", "Unknown source")
        page_info = doc.metadata.get("page", None)

        doc_name = source_info.split("/")[-1].strip()

        if page_info is not None:
            formatted_output += f"\n{doc_name}\tpage no {page_info}"
        else:
            formatted_output += f"\n{doc_name}"

    state.append((question, formatted_output))
    return state, state


def search_docs(prompt, question, state,k='4'):

    from langchain_openai import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.callbacks import get_openai_callback

    global agent
    agent = agent

    state = state or []

    embeddings = OpenAIEmbeddings()
    docs_db = FAISS.load_local(
        "/home/user/app/docs_db/", 
        embeddings, 
        allow_dangerous_deserialization=True
    )
    docs = docs_db.similarity_search(question,int(k))

    prompt += "\n\n"
    prompt += question
    prompt += "\n\n"
    prompt += str(docs)

    with get_openai_callback() as cb:
        response = agent.predict(input=prompt)
        print(cb)

    return formatted_response(docs, question, response, state)

import gradio as gr

css = """
.col{
    max-width: 75%;
    margin: 0 auto;
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("## <center>Your AI Medical Assistant</center>")

    with gr.Tab("Your AI Assistant"):
        with gr.Column(elem_classes="col"):

            with gr.Tab("Query Documents"):
                with gr.Column():
                    create_agent_button = gr.Button("Create Agent")
                    create_agent_output = gr.Textbox(label="Output")

                    docs_prompt_input = gr.Textbox(label="Custom Prompt")
                    k=gr.Textbox(label="Number of Chunks")

                    docs_chatbot = gr.Chatbot(label="Chats")
                    docs_state = gr.State()

                    docs_search_input = gr.Textbox(label="Question")
                    docs_search_button = gr.Button("Search")

                    gr.ClearButton(
                        [docs_prompt_input, docs_search_input, create_agent_output]
                    )

    #########################################################################################################

    create_agent_button.click(create_agent, inputs=None, outputs=create_agent_output)

    docs_search_button.click(
        search_docs,
        inputs=[docs_prompt_input, docs_search_input, docs_state,k],
        outputs=[docs_chatbot, docs_state],
    )

    #########################################################################################################

demo.queue()
demo.launch()