LLM_Sizing / app.py
farmax's picture
Update app.py
3216863 verified
import gradio as gr
import pandas as pd
from tabulate import tabulate
from io import StringIO
def calculate_llm_metrics(num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window):
output = StringIO()
# Print input to output buffer
print(f" num_gpu = {num_gpu}, prompt_size = {prompt_size} tokens, response_size = {response_size} tokens", file=output)
print(f" n_concurrent_request = {n_concurrent_request}, avg_context_window = {avg_context_window} tokens", file=output)
# Define variables
gpu_specs = [
{"name": "A10", "fp16_tflops": 125, "memory_gb": 24, "memory_bandwidth_gbps": 600},
{"name": "A30", "fp16_tflops": 330, "memory_gb": 24, "memory_bandwidth_gbps": 933},
{"name": "L40", "fp16_tflops": 181, "memory_gb": 48, "memory_bandwidth_gbps": 864},
{"name": "L40s", "fp16_tflops": 362, "memory_gb": 48, "memory_bandwidth_gbps": 864},
{"name": "A100 40 GB", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
{"name": "A100 40 GB SXM", "fp16_tflops": 312, "memory_gb": 40, "memory_bandwidth_gbps": 1555},
{"name": "A100 80 GB PCIe", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 1935},
{"name": "A100 80 GB SXM", "fp16_tflops": 312, "memory_gb": 80, "memory_bandwidth_gbps": 2039},
{"name": "H100 PCIe", "fp16_tflops": 1513, "memory_gb": 80, "memory_bandwidth_gbps": 2000},
{"name": "H100 SXM", "fp16_tflops": 1979, "memory_gb": 80, "memory_bandwidth_gbps": 3350},
{"name": "H100 NVL", "fp16_tflops": 3958, "memory_gb": 188, "memory_bandwidth_gbps": 7800}
]
model_specs = [
{"name": "Llama-3-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 8192, "d_head": 128},
{"name": "Llama-3-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 8192, "d_head": 128},
{"name": "Llama-3.1-8B", "params_billion": 8, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 131072, "d_head": 128},
{"name": "Llama-3.1-70B", "params_billion": 70, "d_model": 8192, "n_heads": 64, "n_layers": 80, "max_context_window": 131072, "d_head": 128},
{"name": "Mistral-7B-v0.3", "params_billion": 7, "d_model": 4096, "n_heads": 32, "n_layers": 32, "max_context_window": 32768, "d_head": 128},
{"name": "Falcon-7B", "params_billion": 7, "d_model": 4544, "n_heads": 71, "n_layers": 32, "max_context_window": 2048, "d_head": 64},
{"name": "Falcon-40B", "params_billion": 40, "d_model": 8192, "n_heads": 128, "n_layers": 60, "max_context_window": 2048, "d_head": 64},
{"name": "Falcon-180B", "params_billion": 180, "d_model": 14848, "n_heads": 232, "n_layers": 80, "max_context_window": 2048, "d_head": 64}
]
BYTES_IN_GB = 1_073_741_824
def calc_kv_cache_size_per_token(n_layers, d_model):
return 2 * 2 * n_layers * d_model / BYTES_IN_GB
def calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window):
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
target_gpu_mem = kv_cache_size_per_token * avg_context_window * n_concurrent_request + model_spec["params_billion"] * 2
return target_gpu_mem
print(f"\n******************** Estimate LLM Memory Footprint ********************", file=output)
memory_footprint_table = []
for model_spec in model_specs:
kv_cache_size_per_token = calc_kv_cache_size_per_token(model_spec["n_layers"], model_spec["d_model"])
memory_footprint = calc_memory_footprint(model_spec, n_concurrent_request, avg_context_window)
memory_footprint_table.append([model_spec['name'], f"{kv_cache_size_per_token:.6f} GiB/token", f"{memory_footprint:.2f} GB"])
memory_df = pd.DataFrame(memory_footprint_table, columns=['Model', 'KV Cache Size per Token', 'Memory Footprint'])
print(tabulate(memory_footprint_table, headers=['Model', 'KV Cache Size per Token', 'Memory Footprint'], tablefmt='orgtbl'), file=output)
def calc_kv_cache_tokens(num_gpu, gpu_memory_gb, model_params_billion, kv_cache_size):
result = (num_gpu * gpu_memory_gb - 2 * model_params_billion) / kv_cache_size
return result if result >= 0 else "OOM"
def calc_prefill_time_per_token(num_gpu, model_params_billion, fp16_tflops):
result = (2 * model_params_billion / num_gpu) / fp16_tflops
return result if result >= 0 else "OOM"
def calc_generation_time_per_token(num_gpu, model_params_billion, memory_bandwidth_gbps):
result = (2 * model_params_billion / num_gpu) / memory_bandwidth_gbps * 1000
return result if result >= 0 else "OOM"
def calc_estimated_response_time(prefill_time, generation_time, prompt_size, response_size):
if isinstance(prefill_time, str) or isinstance(generation_time, str):
return "OOM"
return (prompt_size * prefill_time + response_size * generation_time) / 1000
print(f"\n******************** Estimate LLM Capacity and Latency ******************** ", file=output)
capacity_latency_table = []
for model in model_specs:
kv_cache_size = calc_kv_cache_size_per_token(model['n_layers'], model['d_model'])
for gpu in gpu_specs:
kv_cache_tokens = calc_kv_cache_tokens(num_gpu, gpu['memory_gb'], model['params_billion'], kv_cache_size)
prefill_time_per_token = calc_prefill_time_per_token(num_gpu, model['params_billion'], gpu['fp16_tflops'])
generation_time_per_token = calc_generation_time_per_token(num_gpu, model['params_billion'], gpu['memory_bandwidth_gbps'])
estimated_response_time = calc_estimated_response_time(prefill_time_per_token, generation_time_per_token, prompt_size, response_size)
capacity_latency_table.append([model['name'], gpu['name'], f"{kv_cache_tokens}", f"{prefill_time_per_token:.3f} ms", f"{generation_time_per_token:.3f} ms", f"{estimated_response_time:.1f} s"])
capacity_df = pd.DataFrame(capacity_latency_table, columns=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'])
print(tabulate(capacity_latency_table, headers=['Model', 'GPU', 'KV Cache Tokens', 'Prefill Time', 'Generation Time', 'Estimated Response Time'], tablefmt='orgtbl'), file=output)
return output.getvalue(), memory_df, capacity_df
# Create Gradio interface
with gr.Blocks(title="LLM Calculator") as demo:
gr.Markdown("# A calculator to estimate the memory footprint, capacity, and latency on VMware Private AI with NVIDIA")
with gr.Row():
with gr.Column():
num_gpu = gr.Slider(minimum=1, maximum=1000, value=1, step=1, label="Number of GPUs")
prompt_size = gr.Slider(minimum=1, maximum=8192, value=4096, step=1, label="Prompt Size (tokens)")
response_size = gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Response Size (tokens)")
n_concurrent_request = gr.Slider(minimum=1, maximum=1000, value=10, step=1, label="Number of Concurrent Requests")
avg_context_window = gr.Slider(minimum=1, maximum=262144, value=32768, step=1, label="Average Context Window (tokens)")
calculate_button = gr.Button("Calculate")
with gr.Row():
with gr.Column():
text_output = gr.Textbox(label="Detailed Output", lines=10)
with gr.Row():
with gr.Column():
memory_table = gr.Dataframe(label="Memory Footprint Results")
with gr.Row():
with gr.Column():
capacity_table = gr.Dataframe(label="Capacity and Latency Results")
calculate_button.click(
calculate_llm_metrics,
inputs=[num_gpu, prompt_size, response_size, n_concurrent_request, avg_context_window],
outputs=[text_output, memory_table, capacity_table]
)
if __name__ == "__main__":
demo.launch()