Spaces:
Running
Running
import gradio as gr | |
import os | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
import re | |
list_llm = [ | |
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"google/gemma-7b-it", "google/gemma-2b-it", | |
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "tiiuae/falcon-7b-instruct" | |
] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
return text_splitter.split_documents(pages) | |
def create_db(splits, collection_name, db_type): | |
if db_type == 0: # Multilingual MiniLM | |
embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
else: # Italian BERT | |
embedding = HuggingFaceEmbeddings(model_name="dbmdz/bert-base-italian-xxl-uncased") | |
new_client = chromadb.EphemeralClient() | |
return Chroma.from_documents(documents=splits, embedding=embedding, client=new_client, collection_name=collection_name) | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.5, desc="Initializing HF Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature=temperature, | |
max_new_tokens=max_tokens, | |
top_k=top_k, | |
) | |
memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) | |
retriever = vector_db.as_retriever() | |
return ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = unidecode(collection_name.replace(" ", "-")) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)[:50] | |
if len(collection_name) < 3: | |
collection_name += 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
return collection_name | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, db_type, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
collection_name = create_collection_name(list_file_path[0]) | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
vector_db = create_db(doc_splits, collection_name, db_type) | |
return vector_db, collection_name, "Completed!" | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_name = list_llm[llm_option] | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Completed!" | |
def format_chat_history(message, chat_history): | |
return [f"User: {user_message}\nAssistant: {bot_message}" for user_message, bot_message in chat_history] | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"].split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
sources = [(source.page_content.strip(), source.metadata["page"] + 1) for source in response_sources[:5]] | |
new_history = history + [(message, response_answer)] | |
# Ensure we always return 5 sources and 5 pages | |
source_texts = [source[0] for source in sources] + [''] * (5 - len(sources)) | |
source_pages = [source[1] for source in sources] + [0] * (5 - len(sources)) | |
return (qa_chain, gr.update(value=""), new_history, | |
*source_texts[:5], # Unpack exactly 5 source texts | |
*source_pages[:5]) # Unpack exactly 5 source pages | |
def clear_conversation(): | |
return gr.update(value=""), [], "", "", "", "", "", 0, 0, 0, 0, 0 | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown("# Creatore di Chatbot basato su PDF") | |
with gr.Tab("Passo 1 - Carica PDF"): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Carica i tuoi documenti PDF") | |
with gr.Tab("Passo 2 - Elabora Documenti"): | |
db_type = gr.Radio(["ChromaDB (Multilingual MiniLM Embedding)", "ChromaDB (Italian BERT Embedding)"], label="Tipo di database vettoriale", value="ChromaDB (Multilingual MiniLM Embedding)", type="index") | |
with gr.Accordion("Opzioni Avanzate - Divisione del testo del documento", open=False): | |
slider_chunk_size = gr.Slider(100, 1000, 1000, step=20, label="Dimensione del chunk") | |
slider_chunk_overlap = gr.Slider(10, 200, 100, step=10, label="Sovrapposizione del chunk") | |
db_progress = gr.Textbox(label="Inizializzazione del database vettoriale", value="Nessuna") | |
db_btn = gr.Button("Genera database vettoriale") | |
with gr.Tab("Passo 3 - Inizializza catena QA"): | |
llm_btn = gr.Radio(list_llm_simple, label="Modelli LLM", value=list_llm_simple[4], type="index") | |
with gr.Accordion("Opzioni avanzate - Modello LLM", open=False): | |
slider_temperature = gr.Slider(0.01, 1.0, 0.3, step=0.1, label="Temperatura") | |
slider_maxtokens = gr.Slider(224, 4096, 1024, step=32, label="Token massimi") | |
slider_topk = gr.Slider(1, 10, 3, step=1, label="Campioni top-k") | |
language_btn = gr.Radio(["Italiano", "Inglese"], label="Lingua", value="Italiano", type="index") | |
llm_progress = gr.Textbox(value="Nessuna", label="Inizializzazione catena QA") | |
qachain_btn = gr.Button("Inizializza catena di Domanda e Risposta") | |
with gr.Tab("Passo 4 - Chatbot"): | |
chatbot = gr.Chatbot(height=300) | |
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False): | |
doc_sources = [gr.Textbox(label=f"Riferimento {i+1}", lines=2, container=True, scale=20) for i in range(5)] | |
source_pages = [gr.Number(label="Pagina", scale=1) for _ in range(5)] | |
msg = gr.Textbox(placeholder="Inserisci il messaggio (es. 'Di cosa tratta questo documento?')", container=True) | |
submit_btn = gr.Button("Invia messaggio") | |
clear_btn = gr.Button("Cancella conversazione") | |
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap, db_type], outputs=[vector_db, collection_name, db_progress]) | |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]) | |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages) | |
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot] + doc_sources + source_pages) | |
clear_btn.click(clear_conversation, inputs=[], outputs=[chatbot] + doc_sources + source_pages) | |
demo.queue().launch(debug=True) | |
if __name__ == "__main__": | |
demo() |