Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,274 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import Chroma
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from pathlib import Path
|
11 |
+
import chromadb
|
12 |
+
from unidecode import unidecode
|
13 |
+
import re
|
14 |
+
|
15 |
+
# List of available LLM models
|
16 |
+
list_llm = [
|
17 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
18 |
+
"google/gemma-7b-it", "google/gemma-2b-it",
|
19 |
+
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
20 |
+
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
|
21 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct",
|
22 |
+
"tiiuae/falcon-7b-instruct", "google/flan-t5-xxl"
|
23 |
+
]
|
24 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
25 |
+
|
26 |
+
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
27 |
+
loaders = [PyPDFLoader(x) for x in list_file_path]
|
28 |
+
pages = []
|
29 |
+
for loader in loaders:
|
30 |
+
pages.extend(loader.load())
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
32 |
+
chunk_size=chunk_size,
|
33 |
+
chunk_overlap=chunk_overlap
|
34 |
+
)
|
35 |
+
doc_splits = text_splitter.split_documents(pages)
|
36 |
+
return doc_splits
|
37 |
+
|
38 |
+
def create_db(splits, collection_name):
|
39 |
+
embedding = HuggingFaceEmbeddings()
|
40 |
+
new_client = chromadb.EphemeralClient()
|
41 |
+
vectordb = Chroma.from_documents(
|
42 |
+
documents=splits,
|
43 |
+
embedding=embedding,
|
44 |
+
client=new_client,
|
45 |
+
collection_name=collection_name
|
46 |
+
)
|
47 |
+
return vectordb
|
48 |
+
|
49 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
50 |
+
progress(0.5, desc="Initializing HF Hub...")
|
51 |
+
llm = HuggingFaceEndpoint(
|
52 |
+
repo_id=llm_model,
|
53 |
+
temperature=temperature,
|
54 |
+
max_new_tokens=max_tokens,
|
55 |
+
top_k=top_k
|
56 |
+
)
|
57 |
+
|
58 |
+
progress(0.75, desc="Defining buffer memory...")
|
59 |
+
memory = ConversationBufferMemory(
|
60 |
+
memory_key="chat_history",
|
61 |
+
output_key='answer',
|
62 |
+
return_messages=True
|
63 |
+
)
|
64 |
+
retriever = vector_db.as_retriever(search_kwargs={'k': 5}) # Increased from 3 to 5
|
65 |
+
progress(0.8, desc="Defining retrieval chain...")
|
66 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
67 |
+
llm,
|
68 |
+
retriever=retriever,
|
69 |
+
chain_type="stuff",
|
70 |
+
memory=memory,
|
71 |
+
return_source_documents=True,
|
72 |
+
verbose=False,
|
73 |
+
)
|
74 |
+
progress(0.9, desc="Done!")
|
75 |
+
return qa_chain
|
76 |
+
|
77 |
+
def create_collection_name(filepath):
|
78 |
+
collection_name = Path(filepath).stem
|
79 |
+
collection_name = collection_name.replace(" ", "-")
|
80 |
+
collection_name = unidecode(collection_name)
|
81 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
82 |
+
collection_name = collection_name[:50]
|
83 |
+
if len(collection_name) < 3:
|
84 |
+
collection_name = collection_name + 'xyz'
|
85 |
+
if not collection_name[0].isalnum():
|
86 |
+
collection_name = 'A' + collection_name[1:]
|
87 |
+
if not collection_name[-1].isalnum():
|
88 |
+
collection_name = collection_name[:-1] + 'Z'
|
89 |
+
return collection_name
|
90 |
+
|
91 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
92 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
93 |
+
progress(0.1, desc="Creating collection...")
|
94 |
+
collection_name = create_collection_name(list_file_path[0])
|
95 |
+
progress(0.25, desc="Loading documents...")
|
96 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
97 |
+
|
98 |
+
progress(0.5, desc="Generating vector database...")
|
99 |
+
vector_db = create_db(doc_splits, collection_name)
|
100 |
+
progress(0.9, desc="Done!")
|
101 |
+
|
102 |
+
return vector_db, collection_name, "Completed!"
|
103 |
+
|
104 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
105 |
+
llm_name = list_llm[llm_option]
|
106 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
107 |
+
return qa_chain, "Completed!"
|
108 |
+
|
109 |
+
def format_chat_history(message, chat_history):
|
110 |
+
formatted_chat_history = []
|
111 |
+
for user_message, bot_message in chat_history:
|
112 |
+
formatted_chat_history.append(f"User: {user_message}")
|
113 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
114 |
+
return formatted_chat_history
|
115 |
+
|
116 |
+
def conversation(qa_chain, message, history):
|
117 |
+
formatted_chat_history = format_chat_history(message, history)
|
118 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
119 |
+
response_answer = response["answer"]
|
120 |
+
if response_answer.find("Helpful Answer:") != -1:
|
121 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
122 |
+
response_sources = response["source_documents"]
|
123 |
+
|
124 |
+
source_info = []
|
125 |
+
for i in range(min(5, len(response_sources))): # Increased from 3 to 5
|
126 |
+
source = response_sources[i]
|
127 |
+
source_info.append({
|
128 |
+
'content': source.page_content.strip(),
|
129 |
+
'page': source.metadata["page"] + 1
|
130 |
+
})
|
131 |
+
|
132 |
+
new_history = history + [(message, response_answer)]
|
133 |
+
return qa_chain, gr.update(value=""), new_history, *[info['content'] for info in source_info], *[info['page'] for info in source_info]
|
134 |
+
|
135 |
+
# The rest of the code (demo function and UI setup) remains largely the same,
|
136 |
+
# but update the outputs of the conversation function to handle 5 sources instead of 3.
|
137 |
+
def upload_file(file_obj):
|
138 |
+
list_file_path = []
|
139 |
+
for idx, file in enumerate(file_obj):
|
140 |
+
file_path = file_obj.name
|
141 |
+
list_file_path.append(file_path)
|
142 |
+
print(file_path)
|
143 |
+
# initialize_database(file_path, progress)
|
144 |
+
return list_file_path
|
145 |
+
|
146 |
+
def demo():
|
147 |
+
with gr.Blocks(theme="base") as demo:
|
148 |
+
vector_db = gr.State()
|
149 |
+
qa_chain = gr.State()
|
150 |
+
collection_name = gr.State()
|
151 |
+
|
152 |
+
gr.Markdown(
|
153 |
+
"""<center><h2>Creatore di chatbot basato su PDF</center></h2>
|
154 |
+
<h3>Potete fare domande su i vostri documenti PDF</h3>""")
|
155 |
+
|
156 |
+
gr.Markdown(
|
157 |
+
"""<b>Nota:</b> Questo assistente IA, utilizzando Langchain e modelli LLM open source, esegue generazione aumentata da recupero (RAG) dai vostri documenti PDF. \
|
158 |
+
L'interfaccia utente esplicitamente mostra i passaggi multipli per aiutare a comprendere il flusso di lavoro RAG.
|
159 |
+
Questo chatbot tiene conto delle domande passate nel generare le risposte (tramite memoria conversazionale), e include riferimenti ai documenti per scopi di chiarezza.<br>
|
160 |
+
<br><b>Avviso:</b> Questo spazio utilizza l'hardware di base CPU gratuito da Hugging Face. Alcuni passaggi e modelli LLM usati qui sotto (endpoint di inferenza gratuiti) possono richiedere del tempo per generare una risposta.
|
161 |
+
""")
|
162 |
+
|
163 |
+
with gr.Tab("Step 1 - Carica PDFs"):
|
164 |
+
with gr.Row():
|
165 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
166 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
167 |
+
|
168 |
+
with gr.Tab("Step 2 - Processa i documenti"):
|
169 |
+
with gr.Row():
|
170 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
171 |
+
with gr.Accordion("Opzioni Avanzate - Document text splitter", open=False):
|
172 |
+
with gr.Row():
|
173 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=1000, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
174 |
+
with gr.Row():
|
175 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=100, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
176 |
+
with gr.Row():
|
177 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
178 |
+
with gr.Row():
|
179 |
+
db_btn = gr.Button("Genera vector database")
|
180 |
+
|
181 |
+
with gr.Tab("Step 3 - Inizializza QA chain"):
|
182 |
+
with gr.Row():
|
183 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
184 |
+
label="LLM models", value = list_llm_simple[5], type="index", info="Scegli il tuo modello LLM")
|
185 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
186 |
+
with gr.Row():
|
187 |
+
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.3, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
188 |
+
with gr.Row():
|
189 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
190 |
+
with gr.Row():
|
191 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
192 |
+
with gr.Row():
|
193 |
+
language_btn = gr.Radio(["Italian", "English"], label="Linua", value="Italian", type="index", info="Seleziona la lingua per il chatbot")
|
194 |
+
with gr.Row():
|
195 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
196 |
+
with gr.Row():
|
197 |
+
qachain_btn = gr.Button("Inizializza Question Answering chain")
|
198 |
+
|
199 |
+
|
200 |
+
with gr.Tab("Passo 4 - Chatbot"):
|
201 |
+
chatbot = gr.Chatbot(height=300)
|
202 |
+
with gr.Accordion("Opzioni avanzate - Riferimenti ai documenti", open=False):
|
203 |
+
with gr.Row():
|
204 |
+
doc_source1 = gr.Textbox(label="Riferimento 1", lines=2, container=True, scale=20)
|
205 |
+
source1_page = gr.Number(label="Pagina", scale=1)
|
206 |
+
with gr.Row():
|
207 |
+
doc_source2 = gr.Textbox(label="Riferimento 2", lines=2, container=True, scale=20)
|
208 |
+
source2_page = gr.Number(label="Pagina", scale=1)
|
209 |
+
with gr.Row():
|
210 |
+
doc_source3 = gr.Textbox(label="Riferimento 3", lines=2, container=True, scale=20)
|
211 |
+
source3_page = gr.Number(label="Pagina", scale=1)
|
212 |
+
with gr.Row():
|
213 |
+
msg = gr.Textbox(placeholder="Inserisci messaggio (es. 'Di cosa tratta questo documento?')", container=True)
|
214 |
+
with gr.Row():
|
215 |
+
submit_btn = gr.Button("Invia messaggio")
|
216 |
+
clear_btn = gr.ClearButton([msg, chatbot], value="Cancella conversazione")
|
217 |
+
|
218 |
+
# Preprocessing events
|
219 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
220 |
+
db_btn.click(initialize_database, \
|
221 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
222 |
+
outputs=[vector_db, collection_name, db_progress])
|
223 |
+
qachain_btn.click(initialize_LLM, \
|
224 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
225 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
226 |
+
inputs=None, \
|
227 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
228 |
+
queue=False)
|
229 |
+
|
230 |
+
|
231 |
+
# Chatbot events
|
232 |
+
msg.submit(conversation, \
|
233 |
+
inputs=[qa_chain, msg, chatbot], \
|
234 |
+
outputs=[qa_chain, msg, chatbot, \
|
235 |
+
doc_source1, source1_page,
|
236 |
+
doc_source2, source2_page,
|
237 |
+
doc_source3, source3_page,
|
238 |
+
doc_source4, source4_page,
|
239 |
+
doc_source5, source5_page], \
|
240 |
+
queue=False)
|
241 |
+
submit_btn.click(conversation,
|
242 |
+
inputs=[qa_chain, msg, chatbot],
|
243 |
+
outputs=[qa_chain, msg, chatbot,
|
244 |
+
doc_source1, source1_page,
|
245 |
+
doc_source2, source2_page,
|
246 |
+
doc_source3, source3_page,
|
247 |
+
doc_source4, source4_page,
|
248 |
+
doc_source5, source5_page], \
|
249 |
+
queue=False)
|
250 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
251 |
+
inputs=None, \
|
252 |
+
outputs=[chatbot, \
|
253 |
+
doc_source1, source1_page,
|
254 |
+
doc_source2, source2_page,
|
255 |
+
doc_source3, source3_page,
|
256 |
+
doc_source4, source4_page,
|
257 |
+
doc_source5, source5_page], \
|
258 |
+
queue=False)
|
259 |
+
demo.queue().launch(debug=True)
|
260 |
+
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
demo()
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
#####################################################
|
270 |
+
import gradio as gr
|
271 |
+
import os
|
272 |
|
273 |
from langchain_community.document_loaders import PyPDFLoader
|
274 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|