|
import os |
|
from PIL import Image, ImageDraw, ImageFont |
|
import gradio as gr |
|
from helper import load_image_from_url, render_results_in_image |
|
from helper import summarize_predictions_natural_language |
|
from transformers import pipeline |
|
from transformers.utils import logging |
|
logging.set_verbosity_error() |
|
|
|
from helper import ignore_warnings |
|
ignore_warnings() |
|
|
|
|
|
|
|
|
|
od_pipe = pipeline("object-detection", "facebook/detr-resnet-50") |
|
tts_pipe = pipeline("text-to-speech", |
|
model="kakao-enterprise/vits-ljs") |
|
|
|
|
|
def get_pipeline_prediction(pil_image): |
|
|
|
pipeline_output = od_pipe(pil_image) |
|
|
|
processed_image = render_results_in_image(pil_image, |
|
pipeline_output) |
|
|
|
text = summarize_predictions_natural_language(pipeline_output) |
|
print(text) |
|
narrated_text = tts_pipe(text) |
|
|
|
|
|
print(narrated_text["audio"][0]) |
|
print (narrated_text["sampling_rate"]) |
|
return processed_image, (narrated_text["sampling_rate"], narrated_text["audio"][0] ) |
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=get_pipeline_prediction, |
|
inputs=gr.Image(label="Input image", |
|
type="pil"), |
|
outputs=[gr.Image(label="Output image with predicted instances", |
|
type="pil"), gr.Audio(label="Narration", type="numpy", autoplay=True)] |
|
|
|
|
|
) |
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860) |
|
|