Spaces:
Runtime error
Runtime error
File size: 7,296 Bytes
8c9c9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import torch, uuid
import os, sys, shutil, platform
from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from src.utils.init_path import init_path
from pydub import AudioSegment
def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
mp3_file = AudioSegment.from_file(file=mp3_filename)
mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")
class SadTalker():
def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):
if torch.cuda.is_available():
device = "cuda"
elif platform.system() == 'Darwin': # macos
device = "mps"
else:
device = "cpu"
self.device = device
os.environ['TORCH_HOME']= checkpoint_path
self.checkpoint_path = checkpoint_path
self.config_path = config_path
def test(self, source_image, driven_audio, preprocess='crop',
still_mode=False, use_enhancer=False, batch_size=1, size=256,
pose_style = 0,
facerender='facevid2vid',
exp_scale=1.0,
use_ref_video = False,
ref_video = None,
ref_info = None,
use_idle_mode = False,
length_of_audio = 0, use_blink=True,
result_dir='./results/'):
self.sadtalker_paths = init_path(self.checkpoint_path, self.config_path, size, False, preprocess)
print(self.sadtalker_paths)
self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device)
self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device)
if facerender == 'facevid2vid' and self.device != 'mps':
self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)
elif facerender == 'pirender' or self.device == 'mps':
self.animate_from_coeff = AnimateFromCoeff_PIRender(self.sadtalker_paths, self.device)
facerender = 'pirender'
else:
raise(RuntimeError('Unknown model: {}'.format(facerender)))
time_tag = str(uuid.uuid4())
save_dir = os.path.join(result_dir, time_tag)
os.makedirs(save_dir, exist_ok=True)
input_dir = os.path.join(save_dir, 'input')
os.makedirs(input_dir, exist_ok=True)
print(source_image)
pic_path = os.path.join(input_dir, os.path.basename(source_image))
shutil.move(source_image, input_dir)
if driven_audio is not None and os.path.isfile(driven_audio):
audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
#### mp3 to wav
if '.mp3' in audio_path:
mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
audio_path = audio_path.replace('.mp3', '.wav')
else:
shutil.move(driven_audio, input_dir)
elif use_idle_mode:
audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav') ## generate audio from this new audio_path
from pydub import AudioSegment
one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio) #duration in milliseconds
one_sec_segment.export(audio_path, format="wav")
else:
print(use_ref_video, ref_info)
assert use_ref_video == True and ref_info == 'all'
if use_ref_video and ref_info == 'all': # full ref mode
ref_video_videoname = os.path.basename(ref_video)
audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
print('new audiopath:',audio_path)
# if ref_video contains audio, set the audio from ref_video.
cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path)
os.system(cmd)
os.makedirs(save_dir, exist_ok=True)
#crop image and extract 3dmm from image
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size)
if first_coeff_path is None:
raise AttributeError("No face is detected")
if use_ref_video:
print('using ref video for genreation')
ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
os.makedirs(ref_video_frame_dir, exist_ok=True)
print('3DMM Extraction for the reference video providing pose')
ref_video_coeff_path, _, _ = self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
else:
ref_video_coeff_path = None
if use_ref_video:
if ref_info == 'pose':
ref_pose_coeff_path = ref_video_coeff_path
ref_eyeblink_coeff_path = None
elif ref_info == 'blink':
ref_pose_coeff_path = None
ref_eyeblink_coeff_path = ref_video_coeff_path
elif ref_info == 'pose+blink':
ref_pose_coeff_path = ref_video_coeff_path
ref_eyeblink_coeff_path = ref_video_coeff_path
elif ref_info == 'all':
ref_pose_coeff_path = None
ref_eyeblink_coeff_path = None
else:
raise('error in refinfo')
else:
ref_pose_coeff_path = None
ref_eyeblink_coeff_path = None
#audio2ceoff
if use_ref_video and ref_info == 'all':
coeff_path = ref_video_coeff_path # self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
else:
batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \
idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink) # longer audio?
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
#coeff2video
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \
preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender)
return_path = self.animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size)
video_name = data['video_name']
print(f'The generated video is named {video_name} in {save_dir}')
del self.preprocess_model
del self.audio_to_coeff
del self.animate_from_coeff
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
import gc; gc.collect()
return return_path
|