Spaces:
Running
Running
commit
Browse files- app.py +59 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Initialize the Hugging Face API
|
7 |
+
api = HfApi()
|
8 |
+
|
9 |
+
def get_recent_models(min_likes, days_ago):
|
10 |
+
# Get the current date and date from `days_ago` days ago
|
11 |
+
today = datetime.utcnow().replace(tzinfo=None)
|
12 |
+
start_date = (today - timedelta(days=days_ago)).replace(tzinfo=None)
|
13 |
+
|
14 |
+
# Initialize an empty list to store the filtered models
|
15 |
+
recent_models = []
|
16 |
+
|
17 |
+
# Use a generator to fetch models in batches, sorted by likes in descending order
|
18 |
+
for model in api.list_models(sort="likes", direction=-1):
|
19 |
+
if model.likes > 10:
|
20 |
+
if hasattr(model, "created_at") and model.created_at:
|
21 |
+
# Ensure created_at is offset-naive
|
22 |
+
created_at_date = model.created_at.replace(tzinfo=None)
|
23 |
+
if created_at_date >= start_date and model.likes >= min_likes:
|
24 |
+
recent_models.append({
|
25 |
+
"Model ID": f'<a href="https://huggingface.co/{model.modelId}" target="_blank">{model.modelId}</a>',
|
26 |
+
"Likes": model.likes,
|
27 |
+
"Creation Date": model.created_at.strftime("%Y-%m-%d %H:%M")
|
28 |
+
})
|
29 |
+
else:
|
30 |
+
# Since the models are sorted by likes in descending order,
|
31 |
+
# we can stop once we hit a model with 10 or fewer likes
|
32 |
+
break
|
33 |
+
|
34 |
+
# Convert the list of dictionaries to a pandas DataFrame
|
35 |
+
df = pd.DataFrame(recent_models)
|
36 |
+
|
37 |
+
return df
|
38 |
+
|
39 |
+
# Define the Gradio interface
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown("# Model Drops Tracker π")
|
42 |
+
gr.Markdown("Overwhelmed by the rapid pace of model releases? π
You're not alone! That's exactly why I built this tool. Easily filter recent models from the Hub by setting a minimum number of likes and the number of days since their release. Click on a model to see its card.")
|
43 |
+
with gr.Row():
|
44 |
+
likes_slider = gr.Slider(minimum=0, maximum=100, step=10, value=10, label="Minimum Likes")
|
45 |
+
days_slider = gr.Slider(minimum=1, maximum=7, step=1, value=1, label="Days Ago")
|
46 |
+
|
47 |
+
btn = gr.Button("Run")
|
48 |
+
|
49 |
+
with gr.Column():
|
50 |
+
df = gr.DataFrame(
|
51 |
+
headers=["Model ID", "Likes", "Creation Date"],
|
52 |
+
wrap=True,
|
53 |
+
datatype=["html", "number", "str"],
|
54 |
+
)
|
55 |
+
|
56 |
+
btn.click(fn=get_recent_models, inputs=[likes_slider, days_slider], outputs=df)
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
huggingface_hub
|
3 |
+
pytz
|
4 |
+
pandas
|