IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
5.31 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import copy
import logging
import numpy as np
import pickle
import random
import torch.utils.data as data
from detectron2.utils.serialize import PicklableWrapper
__all__ = ["MapDataset", "DatasetFromList", "AspectRatioGroupedDataset"]
class MapDataset(data.Dataset):
"""
Map a function over the elements in a dataset.
Args:
dataset: a dataset where map function is applied.
map_func: a callable which maps the element in dataset. map_func is
responsible for error handling, when error happens, it needs to
return None so the MapDataset will randomly use other
elements from the dataset.
"""
def __init__(self, dataset, map_func):
self._dataset = dataset
self._map_func = PicklableWrapper(map_func) # wrap so that a lambda will work
self._rng = random.Random(42)
self._fallback_candidates = set(range(len(dataset)))
def __len__(self):
return len(self._dataset)
def __getitem__(self, idx):
retry_count = 0
cur_idx = int(idx)
while True:
data = self._map_func(self._dataset[cur_idx])
if data is not None:
self._fallback_candidates.add(cur_idx)
return data
# _map_func fails for this idx, use a random new index from the pool
retry_count += 1
self._fallback_candidates.discard(cur_idx)
cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0]
if retry_count >= 3:
logger = logging.getLogger(__name__)
logger.warning(
"Failed to apply `_map_func` for idx: {}, retry count: {}".format(
idx, retry_count
)
)
class DatasetFromList(data.Dataset):
"""
Wrap a list to a torch Dataset. It produces elements of the list as data.
"""
def __init__(self, lst: list, copy: bool = True, serialize: bool = True):
"""
Args:
lst (list): a list which contains elements to produce.
copy (bool): whether to deepcopy the element when producing it,
so that the result can be modified in place without affecting the
source in the list.
serialize (bool): whether to hold memory using serialized objects, when
enabled, data loader workers can use shared RAM from master
process instead of making a copy.
"""
self._lst = lst
self._copy = copy
self._serialize = serialize
def _serialize(data):
buffer = pickle.dumps(data, protocol=-1)
return np.frombuffer(buffer, dtype=np.uint8)
if self._serialize:
logger = logging.getLogger(__name__)
logger.info(
"Serializing {} elements to byte tensors and concatenating them all ...".format(
len(self._lst)
)
)
self._lst = [_serialize(x) for x in self._lst]
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
self._addr = np.cumsum(self._addr)
self._lst = np.concatenate(self._lst)
logger.info("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024 ** 2))
def __len__(self):
if self._serialize:
return len(self._addr)
else:
return len(self._lst)
def __getitem__(self, idx):
if self._serialize:
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
end_addr = self._addr[idx].item()
bytes = memoryview(self._lst[start_addr:end_addr])
return pickle.loads(bytes)
elif self._copy:
return copy.deepcopy(self._lst[idx])
else:
return self._lst[idx]
class AspectRatioGroupedDataset(data.IterableDataset):
"""
Batch data that have similar aspect ratio together.
In this implementation, images whose aspect ratio < (or >) 1 will
be batched together.
This improves training speed because the images then need less padding
to form a batch.
It assumes the underlying dataset produces dicts with "width" and "height" keys.
It will then produce a list of original dicts with length = batch_size,
all with similar aspect ratios.
"""
def __init__(self, dataset, batch_size):
"""
Args:
dataset: an iterable. Each element must be a dict with keys
"width" and "height", which will be used to batch data.
batch_size (int):
"""
self.dataset = dataset
self.batch_size = batch_size
self._buckets = [[] for _ in range(2)]
# Hard-coded two aspect ratio groups: w > h and w < h.
# Can add support for more aspect ratio groups, but doesn't seem useful
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
bucket_id = 0 if w > h else 1
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]