Spaces:
Runtime error
Runtime error
import streamlit as st | |
from hub import pull_seed_data_from_repo, push_pipeline_to_hub | |
from defaults import ( | |
DEFAULT_SYSTEM_PROMPT, | |
PIPELINE_PATH, | |
PROJECT_NAME, | |
ARGILLA_URL, | |
HUB_USERNAME, | |
CODELESS_DISTILABEL, | |
) | |
from utils import project_sidebar | |
from pipeline import serialize_pipeline, run_pipeline, create_pipelines_run_command | |
st.set_page_config( | |
page_title="Domain Data Grower", | |
page_icon="π§βπΎ", | |
) | |
project_sidebar() | |
################################################################################ | |
# HEADER | |
################################################################################ | |
st.header("π§βπΎ Domain Data Grower") | |
st.divider() | |
st.subheader("Step 3. Run the pipeline to generate synthetic data") | |
st.write("Define the project repos and models that the pipeline will use.") | |
st.divider() | |
############################################################### | |
# CONFIGURATION | |
############################################################### | |
st.markdown("## Pipeline Configuration") | |
st.markdown("#### π€ Hub details to pull the seed data") | |
hub_username = st.text_input("Hub Username", HUB_USERNAME) | |
project_name = st.text_input("Project Name", PROJECT_NAME) | |
repo_id = f"{hub_username}/{project_name}" | |
hub_token = st.text_input("Hub Token", type="password") | |
st.divider() | |
st.markdown("#### π€ Inference configuration") | |
st.write( | |
"Add the url of the Huggingface inference API or endpoint that your pipeline should use. You can find compatible models here:" | |
) | |
with st.expander("π€ Recommended Models"): | |
st.write("All inference endpoint compatible models can be found via the link below") | |
st.link_button( | |
"π€ Inference compaptible models on the hub", | |
"https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending", | |
) | |
st.write("πProjects with sufficient resources could take advantage of LLama3 70b") | |
st.code("https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B") | |
st.write("πͺ«Projects with less resources could take advantage of LLama 3 8b") | |
st.code("https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B") | |
st.write("πProjects with even less resources could take advantage of Phi-2") | |
st.code("https://api-inference.huggingface.co/models/microsoft/phi-2") | |
st.write("Note Hugggingface Pro gives access to more compute resources") | |
st.link_button( | |
"π€ Huggingface Pro", | |
"https://huggingface.co/pricing", | |
) | |
base_url = st.text_input( | |
label="Base URL for the Inference API", | |
value="https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta", | |
) | |
st.divider() | |
st.markdown("#### π¬ Argilla API details to push the generated dataset") | |
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL) | |
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey") | |
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name) | |
st.divider() | |
############################################################### | |
# LOCAL | |
############################################################### | |
st.markdown("## Run the pipeline") | |
st.write( | |
"Once you've defined the pipeline configuration, you can run the pipeline from your local machine." | |
) | |
if CODELESS_DISTILABEL: | |
st.write( | |
"""We recommend running the pipeline locally if you're planning on generating a large dataset. \ | |
But running the pipeline on this space is a handy way to get started quickly. Your synthetic | |
samples will be pushed to Argilla and available for review. | |
""" | |
) | |
st.write( | |
"""If you're planning on running the pipeline on the space, be aware that it \ | |
will take some time to complete and you will need to maintain a \ | |
connection to the space.""" | |
) | |
if st.button("π» Run pipeline locally", key="run_pipeline_local"): | |
if all( | |
[ | |
argilla_api_key, | |
argilla_url, | |
base_url, | |
hub_username, | |
project_name, | |
hub_token, | |
argilla_dataset_name, | |
] | |
): | |
with st.spinner("Pulling seed data from the Hub..."): | |
try: | |
seed_data = pull_seed_data_from_repo( | |
repo_id=f"{hub_username}/{project_name}", | |
hub_token=hub_token, | |
) | |
except Exception: | |
st.error( | |
"Seed data not found. Please make sure you pushed the data seed in Step 2." | |
) | |
domain = seed_data["domain"] | |
perspectives = seed_data["perspectives"] | |
topics = seed_data["topics"] | |
examples = seed_data["examples"] | |
domain_expert_prompt = seed_data["domain_expert_prompt"] | |
with st.spinner("Serializing the pipeline configuration..."): | |
serialize_pipeline( | |
argilla_api_key=argilla_api_key, | |
argilla_dataset_name=argilla_dataset_name, | |
argilla_api_url=argilla_url, | |
topics=topics, | |
perspectives=perspectives, | |
pipeline_config_path=PIPELINE_PATH, | |
domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT, | |
hub_token=hub_token, | |
endpoint_base_url=base_url, | |
examples=examples, | |
) | |
push_pipeline_to_hub( | |
pipeline_path=PIPELINE_PATH, | |
hub_token=hub_token, | |
hub_username=hub_username, | |
project_name=project_name, | |
) | |
st.success(f"Pipeline configuration saved to {hub_username}/{project_name}") | |
st.info( | |
"To run the pipeline locally, you need to have the `distilabel` library installed. You can install it using the following command:" | |
) | |
st.text( | |
"Execute the following command to generate a synthetic dataset from the seed data:" | |
) | |
command_to_run = create_pipelines_run_command( | |
hub_token=hub_token, | |
pipeline_config_path=PIPELINE_PATH, | |
argilla_dataset_name=argilla_dataset_name, | |
argilla_api_key=argilla_api_key, | |
argilla_api_url=argilla_url, | |
) | |
st.code( | |
f""" | |
pip install git+https://github.com/argilla-io/distilabel.git | |
git clone https://huggingface.co/datasets/{hub_username}/{project_name} | |
cd {project_name} | |
pip install -r requirements.txt | |
{' '.join(["python"] + command_to_run[1:])} | |
""", | |
language="bash", | |
) | |
st.subheader( | |
"π©βπ If you want to access the pipeline and manipulate the locally, you can do:" | |
) | |
st.code( | |
""" | |
git clone https://github.com/huggingface/data-is-better-together | |
cd domain-specific-datasets | |
""" | |
) | |
else: | |
st.error("Please fill all the required fields.") | |
############################################################### | |
# SPACE | |
############################################################### | |
if CODELESS_DISTILABEL: | |
if st.button("π₯ Run pipeline right here, right now!"): | |
if all( | |
[ | |
argilla_api_key, | |
argilla_url, | |
base_url, | |
hub_username, | |
project_name, | |
hub_token, | |
argilla_dataset_name, | |
] | |
): | |
with st.spinner("Pulling seed data from the Hub..."): | |
try: | |
seed_data = pull_seed_data_from_repo( | |
repo_id=f"{hub_username}/{project_name}", | |
hub_token=hub_token, | |
) | |
except Exception as e: | |
st.error( | |
"Seed data not found. Please make sure you pushed the data seed in Step 2." | |
) | |
domain = seed_data["domain"] | |
perspectives = seed_data["perspectives"] | |
topics = seed_data["topics"] | |
examples = seed_data["examples"] | |
domain_expert_prompt = seed_data["domain_expert_prompt"] | |
serialize_pipeline( | |
argilla_api_key=argilla_api_key, | |
argilla_dataset_name=argilla_dataset_name, | |
argilla_api_url=argilla_url, | |
topics=topics, | |
perspectives=perspectives, | |
pipeline_config_path=PIPELINE_PATH, | |
domain_expert_prompt=domain_expert_prompt or DEFAULT_SYSTEM_PROMPT, | |
hub_token=hub_token, | |
endpoint_base_url=base_url, | |
examples=examples, | |
) | |
with st.spinner("Starting the pipeline..."): | |
logs = run_pipeline( | |
pipeline_config_path=PIPELINE_PATH, | |
argilla_api_key=argilla_api_key, | |
argilla_api_url=argilla_url, | |
hub_token=hub_token, | |
argilla_dataset_name=argilla_dataset_name, | |
) | |
st.success(f"Pipeline started successfully! π") | |
with st.expander(label="View Logs", expanded=True): | |
for out in logs: | |
st.text(out) | |
else: | |
st.error("Please fill all the required fields.") | |