Spaces:
Runtime error
Runtime error
import streamlit as st | |
from defaults import ARGILLA_URL | |
from hub import push_pipeline_params | |
from utils import project_sidebar | |
st.set_page_config( | |
page_title="Domain Data Grower", | |
page_icon="๐งโ๐พ", | |
) | |
project_sidebar() | |
################################################################################ | |
# HEADER | |
################################################################################ | |
st.header("๐งโ๐พ Domain Data Grower") | |
st.divider() | |
st.subheader("Step 3. Run the pipeline to generate synthetic data") | |
st.write("Define the distilabel pipeline for generating the dataset.") | |
hub_username = st.session_state.get("hub_username") | |
project_name = st.session_state.get("project_name") | |
hub_token = st.session_state.get("hub_token") | |
############################################################### | |
# CONFIGURATION | |
############################################################### | |
st.divider() | |
st.markdown("## ๐งฐ Data Generation Pipeline") | |
st.markdown( | |
""" | |
Now we need to define the configuration for the pipeline that will generate the synthetic data. | |
The pipeline will generate synthetic data by combining self-instruction and domain expert responses. | |
The self-instruction step generates instructions based on seed terms, and the domain expert step generates \ | |
responses to those instructions. Take a look at the [distilabel docs](https://distilabel.argilla.io/latest/sections/learn/tasks/text_generation/#self-instruct) for more information. | |
""" | |
) | |
############################################################### | |
# INFERENCE | |
############################################################### | |
st.markdown("#### ๐ค Inference configuration") | |
st.write( | |
"""Add the url of the Huggingface inference API or endpoint that your pipeline should use to generate instruction and response pairs. \ | |
Some domain tasks may be challenging for smaller models, so you may need to iterate over your task definition and model selection. \ | |
This is a part of the process of generating high-quality synthetic data, human feedback is key to this process. \ | |
You can find compatible models here:""" | |
) | |
with st.expander("๐ค Recommended Models"): | |
st.write("All inference endpoint compatible models can be found via the link below") | |
st.link_button( | |
"๐ค Inference compaptible models on the hub", | |
"https://huggingface.co/models?pipeline_tag=text-generation&other=endpoints_compatible&sort=trending", | |
) | |
st.write("๐Projects with sufficient resources could take advantage of LLama3 70b") | |
st.code( | |
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
) | |
st.write("๐ชซProjects with less resources could take advantage of LLama 3 8b") | |
st.code( | |
"https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
) | |
st.write("๐Projects with even less resources could use Phi-3-mini-4k-instruct") | |
st.code( | |
"https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct" | |
) | |
st.write("Note Hugggingface Pro gives access to more compute resources") | |
st.link_button( | |
"๐ค Huggingface Pro", | |
"https://huggingface.co/pricing", | |
) | |
self_instruct_base_url = st.text_input( | |
label="Model base URL for instruction generation", | |
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct", | |
) | |
domain_expert_base_url = st.text_input( | |
label="Model base URL for domain expert response", | |
value="https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct", | |
) | |
############################################################### | |
# PARAMETERS | |
############################################################### | |
st.divider() | |
st.markdown("#### ๐งฎ Parameters configuration") | |
st.write( | |
"โ ๏ธ Model and parameter choices significantly affect the quality of the generated data. \ | |
We reccomend that you start with generating a few samples and review the data. Then scale up from there. \ | |
You can run the pipeline multiple times with different configurations and append it to the same Argilla dataset." | |
) | |
st.markdown( | |
"Number of generations are the samples that each model will generate for each seed term, \ | |
so if you have 10 seed terms, 2 instruction generations, and 2 response generations, you will have 40 samples in total." | |
) | |
self_intruct_num_generations = st.slider( | |
"Number of generations for self-instruction", 1, 10, 2 | |
) | |
domain_expert_num_generations = st.slider( | |
"Number of generations for domain expert response", 1, 10, 2 | |
) | |
with st.expander("๐ฅ Advanced parameters"): | |
st.markdown( | |
"Temperature is a hyperparameter that controls the randomness of the generated text. \ | |
Lower temperatures will generate more deterministic text, while higher temperatures \ | |
will add more variation to generations." | |
) | |
self_instruct_temperature = st.slider( | |
"Temperature for self-instruction", 0.1, 1.0, 0.9 | |
) | |
domain_expert_temperature = st.slider( | |
"Temperature for domain expert", 0.1, 1.0, 0.9 | |
) | |
st.markdown( | |
"`max_new_tokens` is the maximum number of tokens (word like things) that can be generated by each model call. \ | |
This is a way to control the length of the generated text. in some cases, you may want to increase this to \ | |
generate longer responses. You should adapt this value to your model chice, but default of 2096 works \ | |
in most cases." | |
) | |
self_instruct_max_new_tokens = st.number_input( | |
"Max new tokens for self-instruction", value=2096 | |
) | |
domain_expert_max_new_tokens = st.number_input( | |
"Max new tokens for domain expert", value=2096 | |
) | |
############################################################### | |
# ARGILLA API | |
############################################################### | |
st.divider() | |
st.markdown("#### ๐ฌ Argilla API details to push the generated dataset") | |
st.markdown( | |
"Here you can define the Argilla API details to push the generated dataset to your Argilla space. \ | |
These are the defaults that were set up for the project. You can change them if needed." | |
) | |
argilla_url = st.text_input("Argilla API URL", ARGILLA_URL) | |
argilla_api_key = st.text_input("Argilla API Key", "owner.apikey") | |
argilla_dataset_name = st.text_input("Argilla Dataset Name", project_name) | |
st.divider() | |
############################################################### | |
# Pipeline Run | |
############################################################### | |
st.markdown("## Run the pipeline") | |
st.markdown( | |
"Once you've defined the pipeline configuration above, you can run the pipeline from your local machine." | |
) | |
if all( | |
[ | |
argilla_api_key, | |
argilla_url, | |
self_instruct_base_url, | |
domain_expert_base_url, | |
self_intruct_num_generations, | |
domain_expert_num_generations, | |
self_instruct_temperature, | |
domain_expert_temperature, | |
hub_username, | |
project_name, | |
hub_token, | |
argilla_dataset_name, | |
] | |
) and st.button("๐พ Save Pipeline Config"): | |
with st.spinner("Pushing pipeline to the Hub..."): | |
push_pipeline_params( | |
pipeline_params={ | |
"argilla_api_url": argilla_url, | |
"argilla_dataset_name": argilla_dataset_name, | |
"self_instruct_base_url": self_instruct_base_url, | |
"domain_expert_base_url": domain_expert_base_url, | |
"self_instruct_temperature": self_instruct_temperature, | |
"domain_expert_temperature": domain_expert_temperature, | |
"self_intruct_num_generations": self_intruct_num_generations, | |
"domain_expert_num_generations": domain_expert_num_generations, | |
"self_instruct_max_new_tokens": self_instruct_max_new_tokens, | |
"domain_expert_max_new_tokens": domain_expert_max_new_tokens, | |
}, | |
hub_username=hub_username, | |
hub_token=hub_token, | |
project_name=project_name, | |
) | |
st.success( | |
f"Pipeline configuration pushed to the dataset repo {hub_username}/{project_name} on the Hub." | |
) | |
st.markdown( | |
"To run the pipeline locally, you need to have the `distilabel` library installed. \ | |
You can install it using the following command:" | |
) | |
st.code( | |
body=""" | |
# Install the distilabel library | |
pip install distilabel | |
""", | |
language="bash", | |
) | |
st.markdown( | |
"Next, you'll need to clone the pipeline code and install dependencies:" | |
) | |
st.code( | |
""" | |
git clone https://github.com/huggingface/data-is-better-together | |
cd data-is-better-together/domain-specific-datasets/distilabel_pipelines | |
pip install -r requirements.txt | |
huggingface-cli login | |
""", | |
language="bash", | |
) | |
st.markdown("Finally, you can run the pipeline using the following command:") | |
st.code( | |
f""" | |
python domain_expert_pipeline.py {hub_username}/{project_name}""", | |
language="bash", | |
) | |
st.markdown( | |
"๐ฉโ๐ If you want to customise the pipeline take a look in `domain_expert_pipeline.py` \ | |
and the [distilabel docs](https://distilabel.argilla.io/)" | |
) | |
st.markdown( | |
"๐ Once you've run the pipeline your records will be available in the Argilla space" | |
) | |
st.link_button("๐ Argilla Space", argilla_url) | |
st.markdown("Once you've reviewed the data, you can publish it on the next page:") | |
st.page_link( | |
page="pages/4_๐ Review Generated Data.py", | |
label="Review Generated Data", | |
icon="๐", | |
) | |
else: | |
st.info("Please fill all the required fields.") | |