File size: 7,616 Bytes
e0ccd06 1ce20f1 674f62d e0ccd06 7f61b1d e0ccd06 3fa9161 2018dd8 c7ff178 2018dd8 c7ff178 2018dd8 3fa9161 f02037a 3fa9161 f02037a 3fa9161 f02037a e0ccd06 2018dd8 5ae724e e0ccd06 3fa9161 0a89ae4 e0ccd06 a9b1f7f e0ccd06 674f62d f02037a 554cf75 e0ccd06 a9b1f7f a18eddc a9b1f7f f02037a a9b1f7f a18eddc a9b1f7f fcd14c4 e0ccd06 34e11d5 fcd14c4 34e11d5 fcd14c4 34e11d5 fcd14c4 e0ccd06 68492c3 3cf3e67 68492c3 e0ccd06 7719c51 e0ccd06 fcd14c4 75d7eaa fcd14c4 e0ccd06 fcd14c4 f1ecb17 fcd14c4 01edef7 fcd14c4 e0ccd06 554cf75 e0ccd06 554cf75 e0ccd06 7719c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from openai import OpenAI
import gradio as gr
import os
import json
import html
import random
import datetime
api_key = os.environ.get('FEATHERLESS_API_KEY')
if not api_key:
raise RuntimeError("Cannot start without required API key. Please register for one at https://featherless.ai")
client = OpenAI(
base_url="https://api.featherless.ai/v1",
api_key=api_key
)
with open('./model-cache.json', 'r') as f_model_cache:
model_cache = json.load(f_model_cache)
model_class_from_model_id = { model_id: model_class for model_class, model_ids in model_cache.items() for model_id in model_ids }
model_class_filter = {
"mistral-v02-7b-std-lc": True,
"llama3-8b-8k": True,
"llama31-8b-16k": True,
"llama2-solar-10b7-4k": True,
"mistral-nemo-12b-lc": True,
"llama2-13b-4k": True,
"llama3-15b-8k": True,
"qwen2-32b-lc":False,
"llama3-70b-8k":False,
"llama31-70b-16k": False,
"qwen2-72b-lc":False,
"mixtral-8x22b-lc":False,
"llama3-405b-lc":False,
}
# we run a few other models here as well
REFLECTION="mattshumer/Reflection-Llama-3.1-70B"
QWEN25_72B="Qwen/Qwen2.5-72B"
NEMOTRON="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
bigger_whitelisted_models = [
QWEN25_72B,
NEMOTRON
]
# REFLECTION is in backup hosting
model_class_from_model_id[REFLECTION] = 'llama31-70b-16k'
model_class_from_model_id[NEMOTRON] = 'llama31-70b-16k'
def build_model_choices():
all_choices = []
for model_class in model_cache:
if model_class not in model_class_filter:
print(f"Warning: new model class {model_class}. Treating as blacklisted")
continue
if not model_class_filter[model_class]:
continue
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]
all_choices += [ (f"{model_id}, {model_class_from_model_id[model_id]}", model_id) for model_id in bigger_whitelisted_models ]
return all_choices
model_choices = build_model_choices()
def model_in_list(model):
for label, id in model_choices:
if id == model:
return True
return False
# let's use a random but different model each day.
key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
initial_model = o.choice(model_choices)[1]
initial_model = NEMOTRON
# this doesn't work in HF spaces because we're iframed :(
# def initial_model(referer=None):
# return REFLECTION
# if referer == 'http://127.0.0.1:7860/':
# return 'Sao10K/Venomia-1.1-m7'
# if referer and referer.startswith("https://huggingface.co/"):
# possible_model = referer[23:]
# full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
# model_is_supported = possible_model in full_model_list
# if model_is_supported:
# return possible_model
# # let's use a random but different model each day.
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
# return o.choice(model_choices)[1]
REFLECTION_SYSTEM_PROMPT = """You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags."""
def respond(message, history, model, request: gr.Request):
# insist on that model is in model_choices
if not model_in_list(model):
raise RuntimeError(f"{model} is not supported in this hf space. Visit https://featherless.ai to see and use the complete model catalogue")
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
if model == REFLECTION:
history_openai_format = [
{"role": "system", "content": REFLECTION_SYSTEM_PROMPT},
*history_openai_format
]
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': request.headers.get('referer'),
'X-Title': "HF's missing inference widget"
}
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
escaped_content = html.escape(content)
partial_message += escaped_content
yield partial_message
logo = open('./logo.svg').read()
logo_small = open('./logo-small.svg').read()
title_text="HuggingFace's missing inference widget"
css = """
.logo-mark { fill: #ffe184; }
/* from https://github.com/gradio-app/gradio/issues/4001
* necessary as putting ChatInterface in gr.Blocks changes behaviour
*/
.row {
display: flex;
justify-content: center;
}
.footer p {
width: 450px;
}
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks(title_text, css=css) as demo:
gr.HTML(f"""
<div class="header">
<h1 class="row">HuggingFace's missing inference widget</h1>
<h3 class="row">powered by</h3>
<div class="row">
<a href="https://featherless.ai">
{logo}
</a>
</div>
</div>
""")
# hidden_state = gr.State(value=initial_model)
with gr.Row():
model_selector = gr.Dropdown(
label="Select your Model",
choices=build_model_choices(),
value=initial_model,
# value=hidden_state,
scale=4
)
gr.Button(
value="Visit Model Card ↗️",
scale=1
).click(
inputs=[model_selector],
js="(model_selection) => { window.open(`https://featherless.ai/models/${model_selection}/readme`, '_blank') }",
fn=None,
)
gr.ChatInterface(
respond,
additional_inputs=[model_selector],
head=""",
<script>console.log("Hello from gradio!")</script>
""",
concurrency_limit=5
)
# logo_small_no_text = open('./logo-small-no-text.svg').read()
# x_logo = open('./x-logo.svg').read()
# discord_logo = open('./discord-logo.svg').read()
gr.HTML(f"""
<div class="footer">
<div class="row">
If you enjoyed this space,
check out <a href="https://featherless.ai">featherless.ai</a>,
and follow us <a href="https://x.com/FeatherlessAI">on twitter</a>!
</div>
<!-- <div class="row">If you enjoyed this space,</div>
<div class="row">check out <a href="https://featherless.ai">featherless.ai</a>,</div>
<div class="row">and follow us <a href="https://x.com/FeatherlessAI">on twitter</a>!</div> -->
</div>
""")
# def update_initial_model_choice(request: gr.Request):
# return initial_model(request.headers.get('referer'))
# demo.load(update_initial_model_choice, outputs=model_selector)
demo.launch()
|