|
from openai import OpenAI |
|
import gradio as gr |
|
import os |
|
import json |
|
|
|
api_key = os.environ.get('FEATHERLESS_API_KEY') |
|
client = OpenAI( |
|
base_url="https://api.featherless.ai/v1", |
|
api_key=api_key |
|
) |
|
|
|
SYSTEM_PROMPT = """You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.""" |
|
|
|
def respond(message, history, model): |
|
history_openai_format = [{"role": "system", "content": SYSTEM_PROMPT}] |
|
for human, assistant in history: |
|
history_openai_format.append({"role": "user", "content": human }) |
|
history_openai_format.append({"role": "assistant", "content":assistant}) |
|
history_openai_format.append({"role": "user", "content": message}) |
|
|
|
response = client.chat.completions.create( |
|
model=model, |
|
messages= history_openai_format, |
|
temperature=1.0, |
|
stream=True, |
|
max_tokens=2000, |
|
extra_headers={ |
|
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model', |
|
'X-Title': "HF's missing inference widget" |
|
} |
|
) |
|
|
|
partial_message = "" |
|
for chunk in response: |
|
if chunk.choices[0].delta.content is not None: |
|
partial_message = partial_message + chunk.choices[0].delta.content |
|
yield partial_message |
|
|
|
logo = open('./logo.svg').read() |
|
|
|
with open('./model-cache.json', 'r') as f_model_cache: |
|
model_cache = json.load(f_model_cache) |
|
|
|
|
|
model_class_filter = { |
|
"mistral-v02-7b-std-lc": True, |
|
"llama3-8b-8k": True, |
|
"llama2-solar-10b7-4k": True, |
|
"mistral-nemo-12b-lc": True, |
|
"llama2-13b-4k": True, |
|
"llama3-15b-8k": True, |
|
|
|
"qwen2-32b-lc":False, |
|
"llama3-70b-8k":False, |
|
"qwen2-72b-lc":False, |
|
"mixtral-8x22b-lc":False, |
|
"llama3-405b-lc":False, |
|
} |
|
|
|
def build_model_choices(): |
|
all_choices = [] |
|
for model_class in model_cache: |
|
if model_class not in model_class_filter: |
|
print(f"Warning: new model class {model_class}. Treating as blacklisted") |
|
continue |
|
|
|
if not model_class_filter[model_class]: |
|
continue |
|
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ] |
|
|
|
|
|
model_class = "llama3-70b-8k" |
|
model_id = "mattshumer/Reflection-Llama-3.1-70B" |
|
all_choices += [(f"{model_id} ({model_class})", model_id)] |
|
|
|
return all_choices |
|
|
|
model_choices = build_model_choices() |
|
|
|
def initial_model(referer=None): |
|
return "mattshumer/Reflection-Llama-3.1-70B" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
title_text="HuggingFace's missing inference widget" |
|
css = """ |
|
.logo-mark { fill: #ffe184; } |
|
|
|
/* from https://github.com/gradio-app/gradio/issues/4001 |
|
* necessary as putting ChatInterface in gr.Blocks changes behaviour |
|
*/ |
|
|
|
.contain { display: flex; flex-direction: column; } |
|
.gradio-container { height: 100vh !important; } |
|
#component-0 { height: 100%; } |
|
#chatbot { flex-grow: 1; overflow: auto;} |
|
""" |
|
with gr.Blocks(title_text, css=css) as demo: |
|
gr.HTML(""" |
|
<h1 align="center">HuggingFace's missing inference widget</h1> |
|
<h2 align="center"> |
|
Please select your model from the list 👇 |
|
</h2> |
|
""") |
|
|
|
|
|
with gr.Row(): |
|
model_selector = gr.Dropdown( |
|
label="Select your Model", |
|
choices=build_model_choices(), |
|
value=initial_model, |
|
|
|
scale=4 |
|
) |
|
gr.Button( |
|
value="Visit Model Card ↗️", |
|
scale=1 |
|
).click( |
|
inputs=[model_selector], |
|
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }", |
|
fn=None, |
|
) |
|
|
|
gr.ChatInterface( |
|
respond, |
|
additional_inputs=[model_selector], |
|
head=""", |
|
<script>console.log("Hello from gradio!")</script> |
|
""", |
|
concurrency_limit=5 |
|
) |
|
gr.HTML(f""" |
|
<p align="center"> |
|
Inference by <a href="https://featherless.ai">{logo}</a> |
|
</p> |
|
""") |
|
def update_initial_model_choice(request: gr.Request): |
|
return initial_model(request.headers.get('referer')) |
|
|
|
demo.load(update_initial_model_choice, outputs=model_selector) |
|
|
|
demo.launch() |
|
|