Spaces:
Running
Running
felixrosberg
commited on
Commit
Β·
3b88fc9
1
Parent(s):
fae5def
removed generator code
Browse files
networks/__pycache__/generator.cpython-37.pyc
DELETED
Binary file (7.03 kB)
|
|
networks/__pycache__/generator.cpython-38.pyc
DELETED
Binary file (6.54 kB)
|
|
networks/generator.py
DELETED
@@ -1,321 +0,0 @@
|
|
1 |
-
from tensorflow.keras.layers import *
|
2 |
-
from tensorflow.keras.models import Model
|
3 |
-
from tensorflow_addons.layers import InstanceNormalization
|
4 |
-
from networks.layers import AdaIN, AdaptiveAttention
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
|
9 |
-
def residual_down_block(inputs, filters, resample=True):
|
10 |
-
x = inputs
|
11 |
-
|
12 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
13 |
-
if resample:
|
14 |
-
r = AveragePooling2D()(r)
|
15 |
-
|
16 |
-
x = InstanceNormalization()(x)
|
17 |
-
x = LeakyReLU(0.2)(x)
|
18 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
19 |
-
|
20 |
-
if resample:
|
21 |
-
x = AveragePooling2D()(x)
|
22 |
-
|
23 |
-
x = Add()([x, r])
|
24 |
-
|
25 |
-
return x
|
26 |
-
|
27 |
-
|
28 |
-
def residual_up_block(inputs, filters, resample=True, name=None):
|
29 |
-
x, z_id = inputs
|
30 |
-
|
31 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
32 |
-
if resample:
|
33 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
34 |
-
|
35 |
-
x = InstanceNormalization()(x)
|
36 |
-
x = AdaIN()([x, z_id])
|
37 |
-
x = LeakyReLU(0.2)(x)
|
38 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
39 |
-
|
40 |
-
if resample:
|
41 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
42 |
-
|
43 |
-
x = Add()([x, r])
|
44 |
-
|
45 |
-
return x
|
46 |
-
|
47 |
-
|
48 |
-
def adaptive_attention(inputs, filters, name=None):
|
49 |
-
x_t, x_s = inputs
|
50 |
-
|
51 |
-
m = Concatenate(axis=-1)([x_t, x_s])
|
52 |
-
m = Conv2D(filters=filters // 4, kernel_size=3, strides=1, padding='same')(m)
|
53 |
-
m = LeakyReLU(0.2)(m)
|
54 |
-
m = InstanceNormalization()(m)
|
55 |
-
m = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same', activation='sigmoid', name=name)(m)
|
56 |
-
|
57 |
-
x = AdaptiveAttention()([m, x_t, x_s])
|
58 |
-
|
59 |
-
return x
|
60 |
-
|
61 |
-
|
62 |
-
def adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
63 |
-
x_t, x_s, z_id = inputs
|
64 |
-
|
65 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
66 |
-
|
67 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
68 |
-
if resample:
|
69 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
70 |
-
|
71 |
-
x = InstanceNormalization()(x)
|
72 |
-
x = AdaIN()([x, z_id])
|
73 |
-
x = LeakyReLU(0.2)(x)
|
74 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
75 |
-
|
76 |
-
if resample:
|
77 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
78 |
-
|
79 |
-
x = Add()([x, r])
|
80 |
-
|
81 |
-
return x
|
82 |
-
|
83 |
-
|
84 |
-
def dual_adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
85 |
-
x_t, x_s, z_id = inputs
|
86 |
-
|
87 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name + '_0')
|
88 |
-
x = adaptive_attention([x_t, x], x_t.shape[-1], name=name + '_1')
|
89 |
-
|
90 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
91 |
-
if resample:
|
92 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
93 |
-
|
94 |
-
x = InstanceNormalization()(x)
|
95 |
-
x = AdaIN()([x, z_id])
|
96 |
-
x = LeakyReLU(0.2)(x)
|
97 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
98 |
-
|
99 |
-
if resample:
|
100 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
101 |
-
|
102 |
-
x = Add()([x, r])
|
103 |
-
|
104 |
-
return x
|
105 |
-
|
106 |
-
|
107 |
-
def adaptive_fusion_up_block_no_add(inputs, filters, resample=True, name=None):
|
108 |
-
x_t, x_s, z_id = inputs
|
109 |
-
|
110 |
-
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
111 |
-
|
112 |
-
x = InstanceNormalization()(x)
|
113 |
-
x = AdaIN()([x, z_id])
|
114 |
-
x = LeakyReLU(0.2)(x)
|
115 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
116 |
-
|
117 |
-
return x
|
118 |
-
|
119 |
-
|
120 |
-
def adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=True, name=None):
|
121 |
-
x_t, x_s, z_id = inputs
|
122 |
-
|
123 |
-
x = Concatenate(axis=-1)([x_t, x_s])
|
124 |
-
|
125 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
126 |
-
if resample:
|
127 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
128 |
-
|
129 |
-
x = InstanceNormalization()(x)
|
130 |
-
x = AdaIN()([x, z_id])
|
131 |
-
x = LeakyReLU(0.2)(x)
|
132 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
133 |
-
|
134 |
-
if resample:
|
135 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
136 |
-
|
137 |
-
x = Add(name=name if name == 'final' else None)([x, r])
|
138 |
-
|
139 |
-
return x
|
140 |
-
|
141 |
-
|
142 |
-
def adaptive_fusion_up_block_add_baseline(inputs, filters, resample=True, name=None):
|
143 |
-
x_t, x_s, z_id = inputs
|
144 |
-
|
145 |
-
x = Add()([x_t, x_s])
|
146 |
-
|
147 |
-
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
148 |
-
if resample:
|
149 |
-
r = UpSampling2D(interpolation='bilinear')(r)
|
150 |
-
|
151 |
-
x = InstanceNormalization()(x)
|
152 |
-
x = AdaIN()([x, z_id])
|
153 |
-
x = LeakyReLU(0.2)(x)
|
154 |
-
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
155 |
-
|
156 |
-
if resample:
|
157 |
-
x = UpSampling2D(interpolation='bilinear')(x)
|
158 |
-
|
159 |
-
x = Add()([x, r])
|
160 |
-
|
161 |
-
return x
|
162 |
-
|
163 |
-
|
164 |
-
def get_generator_original(mapping_depth=4, mapping_size=256):
|
165 |
-
x_target = Input(shape=(256, 256, 3))
|
166 |
-
z_source = Input(shape=(512,))
|
167 |
-
|
168 |
-
z_id = z_source
|
169 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
170 |
-
z_id = Dense(mapping_size)(z_id)
|
171 |
-
z_id = LeakyReLU(0.2)(z_id)
|
172 |
-
if mapping_depth >= 1:
|
173 |
-
z_id = Dense(mapping_size)(z_id)
|
174 |
-
|
175 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
176 |
-
|
177 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
178 |
-
|
179 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
180 |
-
|
181 |
-
x_3 = residual_down_block(x_2, 512)
|
182 |
-
|
183 |
-
x_4 = residual_down_block(x_3, 512)
|
184 |
-
|
185 |
-
x_5 = residual_down_block(x_4, 512)
|
186 |
-
|
187 |
-
x_6 = residual_down_block(x_5, 512, resample=False)
|
188 |
-
|
189 |
-
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
190 |
-
|
191 |
-
u_4 = residual_up_block([u_5, z_id], 512)
|
192 |
-
|
193 |
-
u_3 = residual_up_block([u_4, z_id], 512)
|
194 |
-
|
195 |
-
u_2 = residual_up_block([u_3, z_id], 256) # 64
|
196 |
-
|
197 |
-
u_1 = adaptive_fusion_up_block([x_2, u_2, z_id], 128, name='aff_attention_64x64') # 128
|
198 |
-
|
199 |
-
u_0 = adaptive_fusion_up_block([x_1, u_1, z_id], 64, name='aff_attention_128x128') # 256
|
200 |
-
|
201 |
-
out = adaptive_fusion_up_block([x_0, u_0, z_id], 3, resample=False, name='aff_attention_256x256')
|
202 |
-
|
203 |
-
gen_model = Model([x_target, z_source], out)
|
204 |
-
gen_model.summary()
|
205 |
-
|
206 |
-
return gen_model
|
207 |
-
|
208 |
-
|
209 |
-
def make_layer(l_type, inputs, filters, resample, name=None):
|
210 |
-
if l_type == 'affa':
|
211 |
-
return adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
212 |
-
if l_type == 'd_affa':
|
213 |
-
return dual_adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
214 |
-
elif l_type == 'concat':
|
215 |
-
return adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=resample, name=name)
|
216 |
-
elif l_type == 'no_skip':
|
217 |
-
return residual_up_block(inputs[1:], filters, resample=resample)
|
218 |
-
|
219 |
-
|
220 |
-
def get_generator(up_types=None, mapping_depth=4, mapping_size=256):
|
221 |
-
|
222 |
-
if up_types is None:
|
223 |
-
up_types = ['no_skip', 'no_skip', 'd_affa', 'd_affa', 'd_affa', 'concat']
|
224 |
-
|
225 |
-
x_target = Input(shape=(256, 256, 3))
|
226 |
-
z_source = Input(shape=(512,))
|
227 |
-
|
228 |
-
z_id = z_source
|
229 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
230 |
-
z_id = Dense(mapping_size)(z_id)
|
231 |
-
z_id = LeakyReLU(0.2)(z_id)
|
232 |
-
if mapping_depth >= 1:
|
233 |
-
z_id = Dense(mapping_size)(z_id)
|
234 |
-
|
235 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
236 |
-
|
237 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
238 |
-
|
239 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
240 |
-
|
241 |
-
x_3 = residual_down_block(x_2, 512)
|
242 |
-
|
243 |
-
x_4 = residual_down_block(x_3, 512)
|
244 |
-
|
245 |
-
x_5 = residual_down_block(x_4, 512)
|
246 |
-
|
247 |
-
x_6 = residual_down_block(x_5, 512, resample=False)
|
248 |
-
|
249 |
-
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
250 |
-
|
251 |
-
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
252 |
-
|
253 |
-
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
254 |
-
|
255 |
-
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
256 |
-
|
257 |
-
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
258 |
-
|
259 |
-
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
260 |
-
|
261 |
-
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
262 |
-
|
263 |
-
gen_model = Model([x_target, z_source], out)
|
264 |
-
gen_model.summary()
|
265 |
-
|
266 |
-
return gen_model
|
267 |
-
|
268 |
-
|
269 |
-
def get_generator_large(up_types=None, mapping_depth=4, mapping_size=512):
|
270 |
-
|
271 |
-
if up_types is None:
|
272 |
-
up_types = ['no_skip', 'no_skip', 'affa', 'affa', 'affa', 'concat']
|
273 |
-
|
274 |
-
x_target = Input(shape=(256, 256, 3))
|
275 |
-
z_source = Input(shape=(512,))
|
276 |
-
|
277 |
-
z_id = z_source
|
278 |
-
for m in range(np.max([mapping_depth - 1, 0])):
|
279 |
-
z_id = Dense(mapping_size)(z_id)
|
280 |
-
z_id = LeakyReLU(0.2)(z_id)
|
281 |
-
if mapping_depth >= 1:
|
282 |
-
z_id = Dense(mapping_size)(z_id)
|
283 |
-
|
284 |
-
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
285 |
-
|
286 |
-
x_1 = residual_down_block(x_0, 128) # 128
|
287 |
-
|
288 |
-
x_2 = residual_down_block(x_1, 256) # 64
|
289 |
-
|
290 |
-
x_3 = residual_down_block(x_2, 512)
|
291 |
-
|
292 |
-
x_4 = residual_down_block(x_3, 512)
|
293 |
-
|
294 |
-
x_5 = residual_down_block(x_4, 512)
|
295 |
-
|
296 |
-
b_0 = residual_up_block([x_5, z_id], 512, resample=False)
|
297 |
-
|
298 |
-
b_1 = residual_up_block([b_0, z_id], 512, resample=False)
|
299 |
-
|
300 |
-
b_2 = residual_up_block([b_1, z_id], 512, resample=False)
|
301 |
-
|
302 |
-
u_5 = residual_up_block([b_2, z_id], 512, resample=False)
|
303 |
-
|
304 |
-
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
305 |
-
|
306 |
-
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
307 |
-
|
308 |
-
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
309 |
-
|
310 |
-
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
311 |
-
|
312 |
-
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
313 |
-
|
314 |
-
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
315 |
-
|
316 |
-
gen_model = Model([x_target, z_source], out)
|
317 |
-
gen_model.summary()
|
318 |
-
|
319 |
-
return gen_model
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|