Spaces:
Running
Running
felixrosberg
commited on
Commit
β’
69c590e
1
Parent(s):
90aecd1
with private models
Browse files- .idea/.gitignore +3 -0
- .idea/AFFA-face-swap.iml +15 -0
- .idea/inspectionProfiles/Project_Default.xml +38 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- app.py +105 -0
- networks/__pycache__/generator.cpython-37.pyc +0 -0
- networks/__pycache__/generator.cpython-38.pyc +0 -0
- networks/__pycache__/layers.cpython-37.pyc +0 -0
- networks/__pycache__/layers.cpython-38.pyc +0 -0
- networks/generator.py +321 -0
- networks/layers.py +0 -0
- options/__pycache__/swap_options.cpython-37.pyc +0 -0
- options/__pycache__/swap_options.cpython-38.pyc +0 -0
- options/swap_options.py +43 -0
- requirements.txt +6 -0
- retinaface/__pycache__/anchor.cpython-37.pyc +0 -0
- retinaface/__pycache__/anchor.cpython-38.pyc +0 -0
- retinaface/__pycache__/models.cpython-37.pyc +0 -0
- retinaface/__pycache__/models.cpython-38.pyc +0 -0
- retinaface/__pycache__/ops.cpython-37.pyc +0 -0
- retinaface/anchor.py +296 -0
- retinaface/models.py +301 -0
- retinaface/ops.py +27 -0
- utils/__pycache__/utils.cpython-38.pyc +0 -0
- utils/utils.py +377 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/AFFA-face-swap.iml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="inheritedJdk" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="PLAIN" />
|
10 |
+
<option name="myDocStringFormat" value="Plain" />
|
11 |
+
</component>
|
12 |
+
<component name="TestRunnerService">
|
13 |
+
<option name="PROJECT_TEST_RUNNER" value="pytest" />
|
14 |
+
</component>
|
15 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="3">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="ipython" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="Cython" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="tensorflow-gpu" />
|
11 |
+
</list>
|
12 |
+
</value>
|
13 |
+
</option>
|
14 |
+
</inspection_tool>
|
15 |
+
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
16 |
+
<option name="ignoredErrors">
|
17 |
+
<list>
|
18 |
+
<option value="E402" />
|
19 |
+
</list>
|
20 |
+
</option>
|
21 |
+
</inspection_tool>
|
22 |
+
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
23 |
+
<option name="ignoredErrors">
|
24 |
+
<list>
|
25 |
+
<option value="N806" />
|
26 |
+
<option value="N812" />
|
27 |
+
</list>
|
28 |
+
</option>
|
29 |
+
</inspection_tool>
|
30 |
+
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
31 |
+
<option name="ignoredIdentifiers">
|
32 |
+
<list>
|
33 |
+
<option value="torch.backends.cudnn" />
|
34 |
+
</list>
|
35 |
+
</option>
|
36 |
+
</inspection_tool>
|
37 |
+
</profile>
|
38 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (base)" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/AFFA-face-swap.iml" filepath="$PROJECT_DIR$/.idea/AFFA-face-swap.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio
|
2 |
+
|
3 |
+
import tensorflow as tf
|
4 |
+
from huggingface_hub import Repository
|
5 |
+
repo = Repository()
|
6 |
+
|
7 |
+
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm, load_model_internal
|
8 |
+
from networks.generator import get_generator
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
from scipy.ndimage import gaussian_filter
|
12 |
+
|
13 |
+
from tensorflow.keras.models import load_model
|
14 |
+
from retinaface.models import *
|
15 |
+
from options.swap_options import SwapOptions
|
16 |
+
|
17 |
+
|
18 |
+
opt = SwapOptions().parse()
|
19 |
+
|
20 |
+
|
21 |
+
#gpus = tf.config.experimental.list_physical_devices('GPU')
|
22 |
+
#tf.config.set_visible_devices(gpus[opt.device_id], 'GPU')
|
23 |
+
|
24 |
+
RetinaFace = load_model(opt.retina_path,
|
25 |
+
custom_objects={"FPN": FPN,
|
26 |
+
"SSH": SSH,
|
27 |
+
"BboxHead": BboxHead,
|
28 |
+
"LandmarkHead": LandmarkHead,
|
29 |
+
"ClassHead": ClassHead})
|
30 |
+
ArcFace = load_model(opt.arcface_path)
|
31 |
+
|
32 |
+
G = load_model_internal(opt.chkp_dir + opt.log_name + "/gen/", "gen", opt.load)
|
33 |
+
|
34 |
+
blend_mask_base = np.zeros(shape=(256, 256, 1))
|
35 |
+
blend_mask_base[100:240, 32:224] = 1
|
36 |
+
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
|
37 |
+
|
38 |
+
|
39 |
+
def run_inference(target, source):
|
40 |
+
source = np.array(source)
|
41 |
+
target = np.array(target)
|
42 |
+
|
43 |
+
# Prepare to load video
|
44 |
+
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
|
45 |
+
source_h, source_w, _ = source.shape
|
46 |
+
source_lm = get_lm(source_a, source_w, source_h)
|
47 |
+
source_aligned = norm_crop(source, source_lm, image_size=256)
|
48 |
+
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
|
49 |
+
|
50 |
+
# read frame
|
51 |
+
im = target
|
52 |
+
im_h, im_w, _ = im.shape
|
53 |
+
im_shape = (im_w, im_h)
|
54 |
+
|
55 |
+
detection_scale = im_w // 640 if im_w > 640 else 1
|
56 |
+
|
57 |
+
faces = RetinaFace(np.expand_dims(cv2.resize(im,
|
58 |
+
(im_w // detection_scale,
|
59 |
+
im_h // detection_scale)), axis=0)).numpy()
|
60 |
+
|
61 |
+
total_img = im / 255.0
|
62 |
+
for annotation in faces:
|
63 |
+
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
|
64 |
+
[annotation[6] * im_w, annotation[7] * im_h],
|
65 |
+
[annotation[8] * im_w, annotation[9] * im_h],
|
66 |
+
[annotation[10] * im_w, annotation[11] * im_h],
|
67 |
+
[annotation[12] * im_w, annotation[13] * im_h]],
|
68 |
+
dtype=np.float32)
|
69 |
+
|
70 |
+
# align the detected face
|
71 |
+
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
|
72 |
+
im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0)
|
73 |
+
|
74 |
+
# face swap
|
75 |
+
changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
|
76 |
+
source_z])
|
77 |
+
changed_face = (changed_face_cage[0] + 1) / 2
|
78 |
+
|
79 |
+
# get inverse transformation landmarks
|
80 |
+
transformed_lmk = transform_landmark_points(M, lm_align)
|
81 |
+
|
82 |
+
# warp image back
|
83 |
+
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
|
84 |
+
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
|
85 |
+
|
86 |
+
# blend swapped face with target image
|
87 |
+
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
|
88 |
+
blend_mask = np.expand_dims(blend_mask, axis=-1)
|
89 |
+
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
|
90 |
+
|
91 |
+
if opt.compare:
|
92 |
+
total_img = np.concatenate((im / 255.0, total_img), axis=1)
|
93 |
+
|
94 |
+
total_img = np.clip(total_img, 0, 1)
|
95 |
+
total_img *= 255.0
|
96 |
+
total_img = total_img.astype('uint8')
|
97 |
+
|
98 |
+
return total_img
|
99 |
+
|
100 |
+
|
101 |
+
iface = gradio.Interface(run_inference,
|
102 |
+
[gradio.inputs.Image(shape=None),
|
103 |
+
gradio.inputs.Image(shape=None)],
|
104 |
+
gradio.outputs.Image())
|
105 |
+
iface.launch()
|
networks/__pycache__/generator.cpython-37.pyc
ADDED
Binary file (7.03 kB). View file
|
|
networks/__pycache__/generator.cpython-38.pyc
ADDED
Binary file (6.54 kB). View file
|
|
networks/__pycache__/layers.cpython-37.pyc
ADDED
Binary file (69.1 kB). View file
|
|
networks/__pycache__/layers.cpython-38.pyc
ADDED
Binary file (63.7 kB). View file
|
|
networks/generator.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.layers import *
|
2 |
+
from tensorflow.keras.models import Model
|
3 |
+
from tensorflow_addons.layers import InstanceNormalization
|
4 |
+
from networks.layers import AdaIN, AdaptiveAttention
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
def residual_down_block(inputs, filters, resample=True):
|
10 |
+
x = inputs
|
11 |
+
|
12 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
13 |
+
if resample:
|
14 |
+
r = AveragePooling2D()(r)
|
15 |
+
|
16 |
+
x = InstanceNormalization()(x)
|
17 |
+
x = LeakyReLU(0.2)(x)
|
18 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
19 |
+
|
20 |
+
if resample:
|
21 |
+
x = AveragePooling2D()(x)
|
22 |
+
|
23 |
+
x = Add()([x, r])
|
24 |
+
|
25 |
+
return x
|
26 |
+
|
27 |
+
|
28 |
+
def residual_up_block(inputs, filters, resample=True, name=None):
|
29 |
+
x, z_id = inputs
|
30 |
+
|
31 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
32 |
+
if resample:
|
33 |
+
r = UpSampling2D(interpolation='bilinear')(r)
|
34 |
+
|
35 |
+
x = InstanceNormalization()(x)
|
36 |
+
x = AdaIN()([x, z_id])
|
37 |
+
x = LeakyReLU(0.2)(x)
|
38 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
39 |
+
|
40 |
+
if resample:
|
41 |
+
x = UpSampling2D(interpolation='bilinear')(x)
|
42 |
+
|
43 |
+
x = Add()([x, r])
|
44 |
+
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def adaptive_attention(inputs, filters, name=None):
|
49 |
+
x_t, x_s = inputs
|
50 |
+
|
51 |
+
m = Concatenate(axis=-1)([x_t, x_s])
|
52 |
+
m = Conv2D(filters=filters // 4, kernel_size=3, strides=1, padding='same')(m)
|
53 |
+
m = LeakyReLU(0.2)(m)
|
54 |
+
m = InstanceNormalization()(m)
|
55 |
+
m = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same', activation='sigmoid', name=name)(m)
|
56 |
+
|
57 |
+
x = AdaptiveAttention()([m, x_t, x_s])
|
58 |
+
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
def adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
63 |
+
x_t, x_s, z_id = inputs
|
64 |
+
|
65 |
+
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
66 |
+
|
67 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
68 |
+
if resample:
|
69 |
+
r = UpSampling2D(interpolation='bilinear')(r)
|
70 |
+
|
71 |
+
x = InstanceNormalization()(x)
|
72 |
+
x = AdaIN()([x, z_id])
|
73 |
+
x = LeakyReLU(0.2)(x)
|
74 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
75 |
+
|
76 |
+
if resample:
|
77 |
+
x = UpSampling2D(interpolation='bilinear')(x)
|
78 |
+
|
79 |
+
x = Add()([x, r])
|
80 |
+
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
def dual_adaptive_fusion_up_block(inputs, filters, resample=True, name=None):
|
85 |
+
x_t, x_s, z_id = inputs
|
86 |
+
|
87 |
+
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name + '_0')
|
88 |
+
x = adaptive_attention([x_t, x], x_t.shape[-1], name=name + '_1')
|
89 |
+
|
90 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
91 |
+
if resample:
|
92 |
+
r = UpSampling2D(interpolation='bilinear')(r)
|
93 |
+
|
94 |
+
x = InstanceNormalization()(x)
|
95 |
+
x = AdaIN()([x, z_id])
|
96 |
+
x = LeakyReLU(0.2)(x)
|
97 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
98 |
+
|
99 |
+
if resample:
|
100 |
+
x = UpSampling2D(interpolation='bilinear')(x)
|
101 |
+
|
102 |
+
x = Add()([x, r])
|
103 |
+
|
104 |
+
return x
|
105 |
+
|
106 |
+
|
107 |
+
def adaptive_fusion_up_block_no_add(inputs, filters, resample=True, name=None):
|
108 |
+
x_t, x_s, z_id = inputs
|
109 |
+
|
110 |
+
x = adaptive_attention([x_t, x_s], x_t.shape[-1], name=name)
|
111 |
+
|
112 |
+
x = InstanceNormalization()(x)
|
113 |
+
x = AdaIN()([x, z_id])
|
114 |
+
x = LeakyReLU(0.2)(x)
|
115 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
116 |
+
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
def adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=True, name=None):
|
121 |
+
x_t, x_s, z_id = inputs
|
122 |
+
|
123 |
+
x = Concatenate(axis=-1)([x_t, x_s])
|
124 |
+
|
125 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
126 |
+
if resample:
|
127 |
+
r = UpSampling2D(interpolation='bilinear')(r)
|
128 |
+
|
129 |
+
x = InstanceNormalization()(x)
|
130 |
+
x = AdaIN()([x, z_id])
|
131 |
+
x = LeakyReLU(0.2)(x)
|
132 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
133 |
+
|
134 |
+
if resample:
|
135 |
+
x = UpSampling2D(interpolation='bilinear')(x)
|
136 |
+
|
137 |
+
x = Add(name=name if name == 'final' else None)([x, r])
|
138 |
+
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
def adaptive_fusion_up_block_add_baseline(inputs, filters, resample=True, name=None):
|
143 |
+
x_t, x_s, z_id = inputs
|
144 |
+
|
145 |
+
x = Add()([x_t, x_s])
|
146 |
+
|
147 |
+
r = Conv2D(filters=filters, kernel_size=1, strides=1, padding='same')(x)
|
148 |
+
if resample:
|
149 |
+
r = UpSampling2D(interpolation='bilinear')(r)
|
150 |
+
|
151 |
+
x = InstanceNormalization()(x)
|
152 |
+
x = AdaIN()([x, z_id])
|
153 |
+
x = LeakyReLU(0.2)(x)
|
154 |
+
x = Conv2D(filters=filters, kernel_size=3, strides=1, padding='same')(x)
|
155 |
+
|
156 |
+
if resample:
|
157 |
+
x = UpSampling2D(interpolation='bilinear')(x)
|
158 |
+
|
159 |
+
x = Add()([x, r])
|
160 |
+
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
def get_generator_original(mapping_depth=4, mapping_size=256):
|
165 |
+
x_target = Input(shape=(256, 256, 3))
|
166 |
+
z_source = Input(shape=(512,))
|
167 |
+
|
168 |
+
z_id = z_source
|
169 |
+
for m in range(np.max([mapping_depth - 1, 0])):
|
170 |
+
z_id = Dense(mapping_size)(z_id)
|
171 |
+
z_id = LeakyReLU(0.2)(z_id)
|
172 |
+
if mapping_depth >= 1:
|
173 |
+
z_id = Dense(mapping_size)(z_id)
|
174 |
+
|
175 |
+
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
176 |
+
|
177 |
+
x_1 = residual_down_block(x_0, 128) # 128
|
178 |
+
|
179 |
+
x_2 = residual_down_block(x_1, 256) # 64
|
180 |
+
|
181 |
+
x_3 = residual_down_block(x_2, 512)
|
182 |
+
|
183 |
+
x_4 = residual_down_block(x_3, 512)
|
184 |
+
|
185 |
+
x_5 = residual_down_block(x_4, 512)
|
186 |
+
|
187 |
+
x_6 = residual_down_block(x_5, 512, resample=False)
|
188 |
+
|
189 |
+
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
190 |
+
|
191 |
+
u_4 = residual_up_block([u_5, z_id], 512)
|
192 |
+
|
193 |
+
u_3 = residual_up_block([u_4, z_id], 512)
|
194 |
+
|
195 |
+
u_2 = residual_up_block([u_3, z_id], 256) # 64
|
196 |
+
|
197 |
+
u_1 = adaptive_fusion_up_block([x_2, u_2, z_id], 128, name='aff_attention_64x64') # 128
|
198 |
+
|
199 |
+
u_0 = adaptive_fusion_up_block([x_1, u_1, z_id], 64, name='aff_attention_128x128') # 256
|
200 |
+
|
201 |
+
out = adaptive_fusion_up_block([x_0, u_0, z_id], 3, resample=False, name='aff_attention_256x256')
|
202 |
+
|
203 |
+
gen_model = Model([x_target, z_source], out)
|
204 |
+
gen_model.summary()
|
205 |
+
|
206 |
+
return gen_model
|
207 |
+
|
208 |
+
|
209 |
+
def make_layer(l_type, inputs, filters, resample, name=None):
|
210 |
+
if l_type == 'affa':
|
211 |
+
return adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
212 |
+
if l_type == 'd_affa':
|
213 |
+
return dual_adaptive_fusion_up_block(inputs, filters, resample=resample, name=name)
|
214 |
+
elif l_type == 'concat':
|
215 |
+
return adaptive_fusion_up_block_concat_baseline(inputs, filters, resample=resample, name=name)
|
216 |
+
elif l_type == 'no_skip':
|
217 |
+
return residual_up_block(inputs[1:], filters, resample=resample)
|
218 |
+
|
219 |
+
|
220 |
+
def get_generator(up_types=None, mapping_depth=4, mapping_size=256):
|
221 |
+
|
222 |
+
if up_types is None:
|
223 |
+
up_types = ['no_skip', 'no_skip', 'd_affa', 'd_affa', 'd_affa', 'concat']
|
224 |
+
|
225 |
+
x_target = Input(shape=(256, 256, 3))
|
226 |
+
z_source = Input(shape=(512,))
|
227 |
+
|
228 |
+
z_id = z_source
|
229 |
+
for m in range(np.max([mapping_depth - 1, 0])):
|
230 |
+
z_id = Dense(mapping_size)(z_id)
|
231 |
+
z_id = LeakyReLU(0.2)(z_id)
|
232 |
+
if mapping_depth >= 1:
|
233 |
+
z_id = Dense(mapping_size)(z_id)
|
234 |
+
|
235 |
+
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
236 |
+
|
237 |
+
x_1 = residual_down_block(x_0, 128) # 128
|
238 |
+
|
239 |
+
x_2 = residual_down_block(x_1, 256) # 64
|
240 |
+
|
241 |
+
x_3 = residual_down_block(x_2, 512)
|
242 |
+
|
243 |
+
x_4 = residual_down_block(x_3, 512)
|
244 |
+
|
245 |
+
x_5 = residual_down_block(x_4, 512)
|
246 |
+
|
247 |
+
x_6 = residual_down_block(x_5, 512, resample=False)
|
248 |
+
|
249 |
+
u_5 = residual_up_block([x_6, z_id], 512, resample=False)
|
250 |
+
|
251 |
+
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
252 |
+
|
253 |
+
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
254 |
+
|
255 |
+
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
256 |
+
|
257 |
+
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
258 |
+
|
259 |
+
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
260 |
+
|
261 |
+
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
262 |
+
|
263 |
+
gen_model = Model([x_target, z_source], out)
|
264 |
+
gen_model.summary()
|
265 |
+
|
266 |
+
return gen_model
|
267 |
+
|
268 |
+
|
269 |
+
def get_generator_large(up_types=None, mapping_depth=4, mapping_size=512):
|
270 |
+
|
271 |
+
if up_types is None:
|
272 |
+
up_types = ['no_skip', 'no_skip', 'affa', 'affa', 'affa', 'concat']
|
273 |
+
|
274 |
+
x_target = Input(shape=(256, 256, 3))
|
275 |
+
z_source = Input(shape=(512,))
|
276 |
+
|
277 |
+
z_id = z_source
|
278 |
+
for m in range(np.max([mapping_depth - 1, 0])):
|
279 |
+
z_id = Dense(mapping_size)(z_id)
|
280 |
+
z_id = LeakyReLU(0.2)(z_id)
|
281 |
+
if mapping_depth >= 1:
|
282 |
+
z_id = Dense(mapping_size)(z_id)
|
283 |
+
|
284 |
+
x_0 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same')(x_target) # 256
|
285 |
+
|
286 |
+
x_1 = residual_down_block(x_0, 128) # 128
|
287 |
+
|
288 |
+
x_2 = residual_down_block(x_1, 256) # 64
|
289 |
+
|
290 |
+
x_3 = residual_down_block(x_2, 512)
|
291 |
+
|
292 |
+
x_4 = residual_down_block(x_3, 512)
|
293 |
+
|
294 |
+
x_5 = residual_down_block(x_4, 512)
|
295 |
+
|
296 |
+
b_0 = residual_up_block([x_5, z_id], 512, resample=False)
|
297 |
+
|
298 |
+
b_1 = residual_up_block([b_0, z_id], 512, resample=False)
|
299 |
+
|
300 |
+
b_2 = residual_up_block([b_1, z_id], 512, resample=False)
|
301 |
+
|
302 |
+
u_5 = residual_up_block([b_2, z_id], 512, resample=False)
|
303 |
+
|
304 |
+
u_4 = make_layer(up_types[0], [x_5, u_5, z_id], 512, resample=True, name='16x16')
|
305 |
+
|
306 |
+
u_3 = make_layer(up_types[1], [x_4, u_4, z_id], 512, resample=True, name='32x32')
|
307 |
+
|
308 |
+
u_2 = make_layer(up_types[2], [x_3, u_3, z_id], 256, resample=True, name='64x64')
|
309 |
+
|
310 |
+
u_1 = make_layer(up_types[3], [x_2, u_2, z_id], 128, resample=True, name='128x128')
|
311 |
+
|
312 |
+
u_0 = make_layer(up_types[4], [x_1, u_1, z_id], 64, resample=True, name='256x256')
|
313 |
+
|
314 |
+
out = make_layer(up_types[5], [x_0, u_0, z_id], 3, resample=False, name='final')
|
315 |
+
|
316 |
+
gen_model = Model([x_target, z_source], out)
|
317 |
+
gen_model.summary()
|
318 |
+
|
319 |
+
return gen_model
|
320 |
+
|
321 |
+
|
networks/layers.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
options/__pycache__/swap_options.cpython-37.pyc
ADDED
Binary file (6.21 kB). View file
|
|
options/__pycache__/swap_options.cpython-38.pyc
ADDED
Binary file (1.66 kB). View file
|
|
options/swap_options.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
|
4 |
+
class SwapOptions():
|
5 |
+
def __init__(self):
|
6 |
+
self.parser = argparse.ArgumentParser()
|
7 |
+
self.initialized = False
|
8 |
+
|
9 |
+
def initialize(self):
|
10 |
+
# paths (data, models, etc...)
|
11 |
+
self.parser.add_argument('--arcface_path', type=str,
|
12 |
+
default="arcface_model/arcface/arc_res50.h5",
|
13 |
+
help='path to arcface model. Used to extract identity from source.')
|
14 |
+
|
15 |
+
# Video/Image necessary models
|
16 |
+
self.parser.add_argument('--retina_path', type=str,
|
17 |
+
default="retinaface/retinaface_res50.h5",
|
18 |
+
help='path to retinaface model.')
|
19 |
+
self.parser.add_argument('--compare', type=bool,
|
20 |
+
default=True,
|
21 |
+
help='If true, concatenates the frame with the manipulated frame')
|
22 |
+
|
23 |
+
self.parser.add_argument('--load', type=int,
|
24 |
+
default=30,
|
25 |
+
help='int of number to load checkpoint weights.')
|
26 |
+
self.parser.add_argument('--device_id', type=int, default=0,
|
27 |
+
help='which device to use')
|
28 |
+
|
29 |
+
# logging and checkpointing
|
30 |
+
self.parser.add_argument('--log_dir', type=str, default='logs/runs/',
|
31 |
+
help='logging directory')
|
32 |
+
self.parser.add_argument('--log_name', type=str, default='affa_f',
|
33 |
+
help='name of the run, change this to track several experiments')
|
34 |
+
|
35 |
+
self.parser.add_argument('--chkp_dir', type=str, default='checkpoints/',
|
36 |
+
help='checkpoint directory (will use same name as log_name!)')
|
37 |
+
self.initialized = True
|
38 |
+
|
39 |
+
def parse(self):
|
40 |
+
if not self.initialized:
|
41 |
+
self.initialize()
|
42 |
+
self.opt = self.parser.parse_args()
|
43 |
+
return self.opt
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
tensorflow-addons
|
3 |
+
opencv-python-headless
|
4 |
+
scipy
|
5 |
+
pillow
|
6 |
+
scikit-image
|
retinaface/__pycache__/anchor.cpython-37.pyc
ADDED
Binary file (10.3 kB). View file
|
|
retinaface/__pycache__/anchor.cpython-38.pyc
ADDED
Binary file (10.4 kB). View file
|
|
retinaface/__pycache__/models.cpython-37.pyc
ADDED
Binary file (10.7 kB). View file
|
|
retinaface/__pycache__/models.cpython-38.pyc
ADDED
Binary file (10.4 kB). View file
|
|
retinaface/__pycache__/ops.cpython-37.pyc
ADDED
Binary file (1.02 kB). View file
|
|
retinaface/anchor.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Anchor utils modified from https://github.com/biubug6/Pytorch_Retinaface"""
|
2 |
+
import math
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from itertools import product as product
|
6 |
+
|
7 |
+
|
8 |
+
###############################################################################
|
9 |
+
# Tensorflow / Numpy Priors #
|
10 |
+
###############################################################################
|
11 |
+
def prior_box(image_sizes, min_sizes, steps, clip=False):
|
12 |
+
"""prior box"""
|
13 |
+
feature_maps = [
|
14 |
+
[math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)]
|
15 |
+
for step in steps]
|
16 |
+
|
17 |
+
anchors = []
|
18 |
+
for k, f in enumerate(feature_maps):
|
19 |
+
for i, j in product(range(f[0]), range(f[1])):
|
20 |
+
for min_size in min_sizes[k]:
|
21 |
+
s_kx = min_size / image_sizes[1]
|
22 |
+
s_ky = min_size / image_sizes[0]
|
23 |
+
cx = (j + 0.5) * steps[k] / image_sizes[1]
|
24 |
+
cy = (i + 0.5) * steps[k] / image_sizes[0]
|
25 |
+
anchors += [cx, cy, s_kx, s_ky]
|
26 |
+
|
27 |
+
output = np.asarray(anchors).reshape([-1, 4])
|
28 |
+
|
29 |
+
if clip:
|
30 |
+
output = np.clip(output, 0, 1)
|
31 |
+
|
32 |
+
return output
|
33 |
+
|
34 |
+
|
35 |
+
def prior_box_tf(image_sizes, min_sizes, steps, clip=False):
|
36 |
+
"""prior box"""
|
37 |
+
image_sizes = tf.cast(tf.convert_to_tensor(image_sizes), tf.float32)
|
38 |
+
feature_maps = tf.math.ceil(
|
39 |
+
tf.reshape(image_sizes, [1, 2]) /
|
40 |
+
tf.reshape(tf.cast(steps, tf.float32), [-1, 1]))
|
41 |
+
|
42 |
+
anchors = []
|
43 |
+
for k in range(len(min_sizes)):
|
44 |
+
grid_x, grid_y = _meshgrid_tf(tf.range(feature_maps[k][1]),
|
45 |
+
tf.range(feature_maps[k][0]))
|
46 |
+
cx = (grid_x + 0.5) * steps[k] / image_sizes[1]
|
47 |
+
cy = (grid_y + 0.5) * steps[k] / image_sizes[0]
|
48 |
+
cxcy = tf.stack([cx, cy], axis=-1)
|
49 |
+
cxcy = tf.reshape(cxcy, [-1, 2])
|
50 |
+
cxcy = tf.repeat(cxcy, repeats=tf.shape(min_sizes[k])[0], axis=0)
|
51 |
+
|
52 |
+
sx = min_sizes[k] / image_sizes[1]
|
53 |
+
sy = min_sizes[k] / image_sizes[0]
|
54 |
+
sxsy = tf.stack([sx, sy], 1)
|
55 |
+
sxsy = tf.repeat(sxsy[tf.newaxis],
|
56 |
+
repeats=tf.shape(grid_x)[0] * tf.shape(grid_x)[1],
|
57 |
+
axis=0)
|
58 |
+
sxsy = tf.reshape(sxsy, [-1, 2])
|
59 |
+
|
60 |
+
anchors.append(tf.concat([cxcy, sxsy], 1))
|
61 |
+
|
62 |
+
output = tf.concat(anchors, axis=0)
|
63 |
+
|
64 |
+
if clip:
|
65 |
+
output = tf.clip_by_value(output, 0, 1)
|
66 |
+
|
67 |
+
return output
|
68 |
+
|
69 |
+
|
70 |
+
def _meshgrid_tf(x, y):
|
71 |
+
""" workaround solution of the tf.meshgrid() issue:
|
72 |
+
https://github.com/tensorflow/tensorflow/issues/34470"""
|
73 |
+
grid_shape = [tf.shape(y)[0], tf.shape(x)[0]]
|
74 |
+
grid_x = tf.broadcast_to(tf.reshape(x, [1, -1]), grid_shape)
|
75 |
+
grid_y = tf.broadcast_to(tf.reshape(y, [-1, 1]), grid_shape)
|
76 |
+
return grid_x, grid_y
|
77 |
+
|
78 |
+
|
79 |
+
###############################################################################
|
80 |
+
# Tensorflow Encoding #
|
81 |
+
###############################################################################
|
82 |
+
def encode_tf(labels, priors, match_thresh, ignore_thresh,
|
83 |
+
variances=[0.1, 0.2]):
|
84 |
+
"""tensorflow encoding"""
|
85 |
+
assert ignore_thresh <= match_thresh
|
86 |
+
priors = tf.cast(priors, tf.float32)
|
87 |
+
bbox = labels[:, :4]
|
88 |
+
landm = labels[:, 4:-1]
|
89 |
+
landm_valid = labels[:, -1] # 1: with landm, 0: w/o landm.
|
90 |
+
|
91 |
+
# jaccard index
|
92 |
+
overlaps = _jaccard(bbox, _point_form(priors))
|
93 |
+
|
94 |
+
# (Bipartite Matching)
|
95 |
+
# [num_objects] best prior for each ground truth
|
96 |
+
best_prior_overlap, best_prior_idx = tf.math.top_k(overlaps, k=1)
|
97 |
+
best_prior_overlap = best_prior_overlap[:, 0]
|
98 |
+
best_prior_idx = best_prior_idx[:, 0]
|
99 |
+
|
100 |
+
# [num_priors] best ground truth for each prior
|
101 |
+
overlaps_t = tf.transpose(overlaps)
|
102 |
+
best_truth_overlap, best_truth_idx = tf.math.top_k(overlaps_t, k=1)
|
103 |
+
best_truth_overlap = best_truth_overlap[:, 0]
|
104 |
+
best_truth_idx = best_truth_idx[:, 0]
|
105 |
+
|
106 |
+
# ensure best prior
|
107 |
+
def _loop_body(i, bt_idx, bt_overlap):
|
108 |
+
bp_mask = tf.one_hot(best_prior_idx[i], tf.shape(bt_idx)[0])
|
109 |
+
bp_mask_int = tf.cast(bp_mask, tf.int32)
|
110 |
+
new_bt_idx = bt_idx * (1 - bp_mask_int) + bp_mask_int * i
|
111 |
+
bp_mask_float = tf.cast(bp_mask, tf.float32)
|
112 |
+
new_bt_overlap = bt_overlap * (1 - bp_mask_float) + bp_mask_float * 2
|
113 |
+
return tf.cond(best_prior_overlap[i] > match_thresh,
|
114 |
+
lambda: (i + 1, new_bt_idx, new_bt_overlap),
|
115 |
+
lambda: (i + 1, bt_idx, bt_overlap))
|
116 |
+
_, best_truth_idx, best_truth_overlap = tf.while_loop(
|
117 |
+
lambda i, bt_idx, bt_overlap: tf.less(i, tf.shape(best_prior_idx)[0]),
|
118 |
+
_loop_body, [tf.constant(0), best_truth_idx, best_truth_overlap])
|
119 |
+
|
120 |
+
matches_bbox = tf.gather(bbox, best_truth_idx) # [num_priors, 4]
|
121 |
+
matches_landm = tf.gather(landm, best_truth_idx) # [num_priors, 10]
|
122 |
+
matches_landm_v = tf.gather(landm_valid, best_truth_idx) # [num_priors]
|
123 |
+
|
124 |
+
loc_t = _encode_bbox(matches_bbox, priors, variances)
|
125 |
+
landm_t = _encode_landm(matches_landm, priors, variances)
|
126 |
+
landm_valid_t = tf.cast(matches_landm_v > 0, tf.float32)
|
127 |
+
conf_t = tf.cast(best_truth_overlap > match_thresh, tf.float32)
|
128 |
+
conf_t = tf.where(
|
129 |
+
tf.logical_and(best_truth_overlap < match_thresh,
|
130 |
+
best_truth_overlap > ignore_thresh),
|
131 |
+
tf.ones_like(conf_t) * -1, conf_t) # 1: pos, 0: neg, -1: ignore
|
132 |
+
|
133 |
+
return tf.concat([loc_t, landm_t, landm_valid_t[..., tf.newaxis],
|
134 |
+
conf_t[..., tf.newaxis]], axis=1)
|
135 |
+
|
136 |
+
|
137 |
+
def _encode_bbox(matched, priors, variances):
|
138 |
+
"""Encode the variances from the priorbox layers into the ground truth
|
139 |
+
boxes we have matched (based on jaccard overlap) with the prior boxes.
|
140 |
+
Args:
|
141 |
+
matched: (tensor) Coords of ground truth for each prior in point-form
|
142 |
+
Shape: [num_priors, 4].
|
143 |
+
priors: (tensor) Prior boxes in center-offset form
|
144 |
+
Shape: [num_priors,4].
|
145 |
+
variances: (list[float]) Variances of priorboxes
|
146 |
+
Return:
|
147 |
+
encoded boxes (tensor), Shape: [num_priors, 4]
|
148 |
+
"""
|
149 |
+
|
150 |
+
# dist b/t match center and prior's center
|
151 |
+
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
|
152 |
+
# encode variance
|
153 |
+
g_cxcy /= (variances[0] * priors[:, 2:])
|
154 |
+
# match wh / prior wh
|
155 |
+
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
156 |
+
g_wh = tf.math.log(g_wh) / variances[1]
|
157 |
+
# return target for smooth_l1_loss
|
158 |
+
return tf.concat([g_cxcy, g_wh], 1) # [num_priors,4]
|
159 |
+
|
160 |
+
|
161 |
+
def _encode_landm(matched, priors, variances):
|
162 |
+
"""Encode the variances from the priorbox layers into the ground truth
|
163 |
+
boxes we have matched (based on jaccard overlap) with the prior boxes.
|
164 |
+
Args:
|
165 |
+
matched: (tensor) Coords of ground truth for each prior in point-form
|
166 |
+
Shape: [num_priors, 10].
|
167 |
+
priors: (tensor) Prior boxes in center-offset form
|
168 |
+
Shape: [num_priors,4].
|
169 |
+
variances: (list[float]) Variances of priorboxes
|
170 |
+
Return:
|
171 |
+
encoded landm (tensor), Shape: [num_priors, 10]
|
172 |
+
"""
|
173 |
+
|
174 |
+
# dist b/t match center and prior's center
|
175 |
+
matched = tf.reshape(matched, [tf.shape(matched)[0], 5, 2])
|
176 |
+
priors = tf.broadcast_to(
|
177 |
+
tf.expand_dims(priors, 1), [tf.shape(matched)[0], 5, 4])
|
178 |
+
g_cxcy = matched[:, :, :2] - priors[:, :, :2]
|
179 |
+
# encode variance
|
180 |
+
g_cxcy /= (variances[0] * priors[:, :, 2:])
|
181 |
+
# g_cxcy /= priors[:, :, 2:]
|
182 |
+
g_cxcy = tf.reshape(g_cxcy, [tf.shape(g_cxcy)[0], -1])
|
183 |
+
# return target for smooth_l1_loss
|
184 |
+
return g_cxcy
|
185 |
+
|
186 |
+
|
187 |
+
def _point_form(boxes):
|
188 |
+
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
|
189 |
+
representation for comparison to point form ground truth data.
|
190 |
+
Args:
|
191 |
+
boxes: (tensor) center-size default boxes from priorbox layers.
|
192 |
+
Return:
|
193 |
+
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
194 |
+
"""
|
195 |
+
return tf.concat((boxes[:, :2] - boxes[:, 2:] / 2,
|
196 |
+
boxes[:, :2] + boxes[:, 2:] / 2), axis=1)
|
197 |
+
|
198 |
+
|
199 |
+
def _intersect(box_a, box_b):
|
200 |
+
""" We resize both tensors to [A,B,2]:
|
201 |
+
[A,2] -> [A,1,2] -> [A,B,2]
|
202 |
+
[B,2] -> [1,B,2] -> [A,B,2]
|
203 |
+
Then we compute the area of intersect between box_a and box_b.
|
204 |
+
Args:
|
205 |
+
box_a: (tensor) bounding boxes, Shape: [A,4].
|
206 |
+
box_b: (tensor) bounding boxes, Shape: [B,4].
|
207 |
+
Return:
|
208 |
+
(tensor) intersection area, Shape: [A,B].
|
209 |
+
"""
|
210 |
+
A = tf.shape(box_a)[0]
|
211 |
+
B = tf.shape(box_b)[0]
|
212 |
+
max_xy = tf.minimum(
|
213 |
+
tf.broadcast_to(tf.expand_dims(box_a[:, 2:], 1), [A, B, 2]),
|
214 |
+
tf.broadcast_to(tf.expand_dims(box_b[:, 2:], 0), [A, B, 2]))
|
215 |
+
min_xy = tf.maximum(
|
216 |
+
tf.broadcast_to(tf.expand_dims(box_a[:, :2], 1), [A, B, 2]),
|
217 |
+
tf.broadcast_to(tf.expand_dims(box_b[:, :2], 0), [A, B, 2]))
|
218 |
+
inter = tf.maximum((max_xy - min_xy), tf.zeros_like(max_xy - min_xy))
|
219 |
+
return inter[:, :, 0] * inter[:, :, 1]
|
220 |
+
|
221 |
+
|
222 |
+
def _jaccard(box_a, box_b):
|
223 |
+
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
224 |
+
is simply the intersection over union of two boxes. Here we operate on
|
225 |
+
ground truth boxes and default boxes.
|
226 |
+
E.g.:
|
227 |
+
A β© B / A βͺ B = A β© B / (area(A) + area(B) - A β© B)
|
228 |
+
Args:
|
229 |
+
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
|
230 |
+
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
|
231 |
+
Return:
|
232 |
+
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
|
233 |
+
"""
|
234 |
+
inter = _intersect(box_a, box_b)
|
235 |
+
area_a = tf.broadcast_to(
|
236 |
+
tf.expand_dims(
|
237 |
+
(box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]), 1),
|
238 |
+
tf.shape(inter)) # [A,B]
|
239 |
+
area_b = tf.broadcast_to(
|
240 |
+
tf.expand_dims(
|
241 |
+
(box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]), 0),
|
242 |
+
tf.shape(inter)) # [A,B]
|
243 |
+
union = area_a + area_b - inter
|
244 |
+
return inter / union # [A,B]
|
245 |
+
|
246 |
+
|
247 |
+
###############################################################################
|
248 |
+
# Tensorflow Decoding #
|
249 |
+
###############################################################################
|
250 |
+
def decode_tf(labels, priors, variances=[0.1, 0.2]):
|
251 |
+
"""tensorflow decoding"""
|
252 |
+
bbox = _decode_bbox(labels[:, :4], priors, variances)
|
253 |
+
landm = _decode_landm(labels[:, 4:14], priors, variances)
|
254 |
+
landm_valid = labels[:, 14][:, tf.newaxis]
|
255 |
+
conf = labels[:, 15][:, tf.newaxis]
|
256 |
+
|
257 |
+
return tf.concat([bbox, landm, landm_valid, conf], axis=1)
|
258 |
+
|
259 |
+
|
260 |
+
def _decode_bbox(pre, priors, variances=[0.1, 0.2]):
|
261 |
+
"""Decode locations from predictions using priors to undo
|
262 |
+
the encoding we did for offset regression at train time.
|
263 |
+
Args:
|
264 |
+
pre (tensor): location predictions for loc layers,
|
265 |
+
Shape: [num_priors,4]
|
266 |
+
priors (tensor): Prior boxes in center-offset form.
|
267 |
+
Shape: [num_priors,4].
|
268 |
+
variances: (list[float]) Variances of priorboxes
|
269 |
+
Return:
|
270 |
+
decoded bounding box predictions
|
271 |
+
"""
|
272 |
+
centers = priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:]
|
273 |
+
sides = priors[:, 2:] * tf.math.exp(pre[:, 2:] * variances[1])
|
274 |
+
|
275 |
+
return tf.concat([centers - sides / 2, centers + sides / 2], axis=1)
|
276 |
+
|
277 |
+
|
278 |
+
def _decode_landm(pre, priors, variances=[0.1, 0.2]):
|
279 |
+
"""Decode landm from predictions using priors to undo
|
280 |
+
the encoding we did for offset regression at train time.
|
281 |
+
Args:
|
282 |
+
pre (tensor): landm predictions for loc layers,
|
283 |
+
Shape: [num_priors,10]
|
284 |
+
priors (tensor): Prior boxes in center-offset form.
|
285 |
+
Shape: [num_priors,4].
|
286 |
+
variances: (list[float]) Variances of priorboxes
|
287 |
+
Return:
|
288 |
+
decoded landm predictions
|
289 |
+
"""
|
290 |
+
landms = tf.concat(
|
291 |
+
[priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
|
292 |
+
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
|
293 |
+
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
|
294 |
+
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
|
295 |
+
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:]], axis=1)
|
296 |
+
return landms
|
retinaface/models.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import Model
|
3 |
+
from tensorflow.keras.applications import MobileNetV2, ResNet50
|
4 |
+
from tensorflow.keras.layers import Input, Conv2D, ReLU, LeakyReLU
|
5 |
+
from retinaface.anchor import decode_tf, prior_box_tf
|
6 |
+
|
7 |
+
|
8 |
+
def _regularizer(weights_decay):
|
9 |
+
"""l2 regularizer"""
|
10 |
+
return tf.keras.regularizers.l2(weights_decay)
|
11 |
+
|
12 |
+
|
13 |
+
def _kernel_init(scale=1.0, seed=None):
|
14 |
+
"""He normal initializer"""
|
15 |
+
return tf.keras.initializers.he_normal()
|
16 |
+
|
17 |
+
|
18 |
+
class BatchNormalization(tf.keras.layers.BatchNormalization):
|
19 |
+
"""Make trainable=False freeze BN for real (the og version is sad).
|
20 |
+
ref: https://github.com/zzh8829/yolov3-tf2
|
21 |
+
"""
|
22 |
+
def __init__(self, axis=-1, momentum=0.9, epsilon=1e-5, center=True,
|
23 |
+
scale=True, name=None, **kwargs):
|
24 |
+
super(BatchNormalization, self).__init__(
|
25 |
+
axis=axis, momentum=momentum, epsilon=epsilon, center=center,
|
26 |
+
scale=scale, name=name, **kwargs)
|
27 |
+
|
28 |
+
def call(self, x, training=False):
|
29 |
+
if training is None:
|
30 |
+
training = tf.constant(False)
|
31 |
+
training = tf.logical_and(training, self.trainable)
|
32 |
+
|
33 |
+
return super().call(x, training)
|
34 |
+
|
35 |
+
|
36 |
+
def Backbone(backbone_type='ResNet50', use_pretrain=True):
|
37 |
+
"""Backbone Model"""
|
38 |
+
weights = None
|
39 |
+
if use_pretrain:
|
40 |
+
weights = 'imagenet'
|
41 |
+
|
42 |
+
def backbone(x):
|
43 |
+
if backbone_type == 'ResNet50':
|
44 |
+
extractor = ResNet50(
|
45 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
46 |
+
pick_layer1 = 80 # [80, 80, 512]
|
47 |
+
pick_layer2 = 142 # [40, 40, 1024]
|
48 |
+
pick_layer3 = 174 # [20, 20, 2048]
|
49 |
+
preprocess = tf.keras.applications.resnet.preprocess_input
|
50 |
+
elif backbone_type == 'MobileNetV2':
|
51 |
+
extractor = MobileNetV2(
|
52 |
+
input_shape=x.shape[1:], include_top=False, weights=weights)
|
53 |
+
pick_layer1 = 54 # [80, 80, 32]
|
54 |
+
pick_layer2 = 116 # [40, 40, 96]
|
55 |
+
pick_layer3 = 143 # [20, 20, 160]
|
56 |
+
preprocess = tf.keras.applications.mobilenet_v2.preprocess_input
|
57 |
+
else:
|
58 |
+
raise NotImplementedError(
|
59 |
+
'Backbone type {} is not recognized.'.format(backbone_type))
|
60 |
+
|
61 |
+
return Model(extractor.input,
|
62 |
+
(extractor.layers[pick_layer1].output,
|
63 |
+
extractor.layers[pick_layer2].output,
|
64 |
+
extractor.layers[pick_layer3].output),
|
65 |
+
name=backbone_type + '_extrator')(preprocess(x))
|
66 |
+
|
67 |
+
return backbone
|
68 |
+
|
69 |
+
|
70 |
+
class ConvUnit(tf.keras.layers.Layer):
|
71 |
+
"""Conv + BN + Act"""
|
72 |
+
def __init__(self, f, k, s, wd, act=None, **kwargs):
|
73 |
+
super(ConvUnit, self).__init__(**kwargs)
|
74 |
+
self.conv = Conv2D(filters=f, kernel_size=k, strides=s, padding='same',
|
75 |
+
kernel_initializer=_kernel_init(),
|
76 |
+
kernel_regularizer=_regularizer(wd),
|
77 |
+
use_bias=False)
|
78 |
+
self.bn = BatchNormalization()
|
79 |
+
|
80 |
+
if act is None:
|
81 |
+
self.act_fn = tf.identity
|
82 |
+
elif act == 'relu':
|
83 |
+
self.act_fn = ReLU()
|
84 |
+
elif act == 'lrelu':
|
85 |
+
self.act_fn = LeakyReLU(0.1)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(
|
88 |
+
'Activation function type {} is not recognized.'.format(act))
|
89 |
+
|
90 |
+
def call(self, x):
|
91 |
+
return self.act_fn(self.bn(self.conv(x)))
|
92 |
+
|
93 |
+
|
94 |
+
class FPN(tf.keras.layers.Layer):
|
95 |
+
"""Feature Pyramid Network"""
|
96 |
+
def __init__(self, out_ch, wd, **kwargs):
|
97 |
+
super(FPN, self).__init__(**kwargs)
|
98 |
+
act = 'relu'
|
99 |
+
self.out_ch = out_ch
|
100 |
+
self.wd = wd
|
101 |
+
if (out_ch <= 64):
|
102 |
+
act = 'lrelu'
|
103 |
+
|
104 |
+
self.output1 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
105 |
+
self.output2 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
106 |
+
self.output3 = ConvUnit(f=out_ch, k=1, s=1, wd=wd, act=act)
|
107 |
+
self.merge1 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
108 |
+
self.merge2 = ConvUnit(f=out_ch, k=3, s=1, wd=wd, act=act)
|
109 |
+
|
110 |
+
def call(self, x):
|
111 |
+
output1 = self.output1(x[0]) # [80, 80, out_ch]
|
112 |
+
output2 = self.output2(x[1]) # [40, 40, out_ch]
|
113 |
+
output3 = self.output3(x[2]) # [20, 20, out_ch]
|
114 |
+
|
115 |
+
up_h, up_w = tf.shape(output2)[1], tf.shape(output2)[2]
|
116 |
+
up3 = tf.image.resize(output3, [up_h, up_w], method='nearest')
|
117 |
+
output2 = output2 + up3
|
118 |
+
output2 = self.merge2(output2)
|
119 |
+
|
120 |
+
up_h, up_w = tf.shape(output1)[1], tf.shape(output1)[2]
|
121 |
+
up2 = tf.image.resize(output2, [up_h, up_w], method='nearest')
|
122 |
+
output1 = output1 + up2
|
123 |
+
output1 = self.merge1(output1)
|
124 |
+
|
125 |
+
return output1, output2, output3
|
126 |
+
|
127 |
+
def get_config(self):
|
128 |
+
config = {
|
129 |
+
'out_ch': self.out_ch,
|
130 |
+
'wd': self.wd,
|
131 |
+
}
|
132 |
+
base_config = super(FPN, self).get_config()
|
133 |
+
return dict(list(base_config.items()) + list(config.items()))
|
134 |
+
|
135 |
+
|
136 |
+
class SSH(tf.keras.layers.Layer):
|
137 |
+
"""Single Stage Headless Layer"""
|
138 |
+
def __init__(self, out_ch, wd, **kwargs):
|
139 |
+
super(SSH, self).__init__(**kwargs)
|
140 |
+
assert out_ch % 4 == 0
|
141 |
+
self.out_ch = out_ch
|
142 |
+
self.wd = wd
|
143 |
+
act = 'relu'
|
144 |
+
if (out_ch <= 64):
|
145 |
+
act = 'lrelu'
|
146 |
+
|
147 |
+
self.conv_3x3 = ConvUnit(f=out_ch // 2, k=3, s=1, wd=wd, act=None)
|
148 |
+
|
149 |
+
self.conv_5x5_1 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
150 |
+
self.conv_5x5_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
151 |
+
|
152 |
+
self.conv_7x7_2 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=act)
|
153 |
+
self.conv_7x7_3 = ConvUnit(f=out_ch // 4, k=3, s=1, wd=wd, act=None)
|
154 |
+
|
155 |
+
self.relu = ReLU()
|
156 |
+
|
157 |
+
def call(self, x):
|
158 |
+
conv_3x3 = self.conv_3x3(x)
|
159 |
+
|
160 |
+
conv_5x5_1 = self.conv_5x5_1(x)
|
161 |
+
conv_5x5 = self.conv_5x5_2(conv_5x5_1)
|
162 |
+
|
163 |
+
conv_7x7_2 = self.conv_7x7_2(conv_5x5_1)
|
164 |
+
conv_7x7 = self.conv_7x7_3(conv_7x7_2)
|
165 |
+
|
166 |
+
output = tf.concat([conv_3x3, conv_5x5, conv_7x7], axis=3)
|
167 |
+
output = self.relu(output)
|
168 |
+
|
169 |
+
return output
|
170 |
+
|
171 |
+
def get_config(self):
|
172 |
+
config = {
|
173 |
+
'out_ch': self.out_ch,
|
174 |
+
'wd': self.wd,
|
175 |
+
}
|
176 |
+
base_config = super(SSH, self).get_config()
|
177 |
+
return dict(list(base_config.items()) + list(config.items()))
|
178 |
+
|
179 |
+
|
180 |
+
class BboxHead(tf.keras.layers.Layer):
|
181 |
+
"""Bbox Head Layer"""
|
182 |
+
def __init__(self, num_anchor, wd, **kwargs):
|
183 |
+
super(BboxHead, self).__init__(**kwargs)
|
184 |
+
self.num_anchor = num_anchor
|
185 |
+
self.wd = wd
|
186 |
+
self.conv = Conv2D(filters=num_anchor * 4, kernel_size=1, strides=1)
|
187 |
+
|
188 |
+
def call(self, x):
|
189 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
190 |
+
x = self.conv(x)
|
191 |
+
|
192 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 4])
|
193 |
+
|
194 |
+
def get_config(self):
|
195 |
+
config = {
|
196 |
+
'num_anchor': self.num_anchor,
|
197 |
+
'wd': self.wd,
|
198 |
+
}
|
199 |
+
base_config = super(BboxHead, self).get_config()
|
200 |
+
return dict(list(base_config.items()) + list(config.items()))
|
201 |
+
|
202 |
+
|
203 |
+
class LandmarkHead(tf.keras.layers.Layer):
|
204 |
+
"""Landmark Head Layer"""
|
205 |
+
def __init__(self, num_anchor, wd, name='LandmarkHead', **kwargs):
|
206 |
+
super(LandmarkHead, self).__init__(name=name, **kwargs)
|
207 |
+
self.num_anchor = num_anchor
|
208 |
+
self.wd = wd
|
209 |
+
self.conv = Conv2D(filters=num_anchor * 10, kernel_size=1, strides=1)
|
210 |
+
|
211 |
+
def call(self, x):
|
212 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
213 |
+
x = self.conv(x)
|
214 |
+
|
215 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 10])
|
216 |
+
|
217 |
+
def get_config(self):
|
218 |
+
config = {
|
219 |
+
'num_anchor': self.num_anchor,
|
220 |
+
'wd': self.wd,
|
221 |
+
}
|
222 |
+
base_config = super(LandmarkHead, self).get_config()
|
223 |
+
return dict(list(base_config.items()) + list(config.items()))
|
224 |
+
|
225 |
+
|
226 |
+
class ClassHead(tf.keras.layers.Layer):
|
227 |
+
"""Class Head Layer"""
|
228 |
+
def __init__(self, num_anchor, wd, name='ClassHead', **kwargs):
|
229 |
+
super(ClassHead, self).__init__(name=name, **kwargs)
|
230 |
+
self.num_anchor = num_anchor
|
231 |
+
self.wd = wd
|
232 |
+
self.conv = Conv2D(filters=num_anchor * 2, kernel_size=1, strides=1)
|
233 |
+
|
234 |
+
def call(self, x):
|
235 |
+
h, w = tf.shape(x)[1], tf.shape(x)[2]
|
236 |
+
x = self.conv(x)
|
237 |
+
|
238 |
+
return tf.reshape(x, [-1, h * w * self.num_anchor, 2])
|
239 |
+
|
240 |
+
def get_config(self):
|
241 |
+
config = {
|
242 |
+
'num_anchor': self.num_anchor,
|
243 |
+
'wd': self.wd,
|
244 |
+
}
|
245 |
+
base_config = super(ClassHead, self).get_config()
|
246 |
+
return dict(list(base_config.items()) + list(config.items()))
|
247 |
+
|
248 |
+
|
249 |
+
def RetinaFaceModel(cfg, training=False, iou_th=0.4, score_th=0.02,
|
250 |
+
name='RetinaFaceModel'):
|
251 |
+
"""Retina Face Model"""
|
252 |
+
input_size = cfg['input_size'] if training else None
|
253 |
+
wd = cfg['weights_decay']
|
254 |
+
out_ch = cfg['out_channel']
|
255 |
+
num_anchor = len(cfg['min_sizes'][0])
|
256 |
+
backbone_type = cfg['backbone_type']
|
257 |
+
|
258 |
+
# define model
|
259 |
+
x = inputs = Input([input_size, input_size, 3], name='input_image')
|
260 |
+
|
261 |
+
x = Backbone(backbone_type=backbone_type)(x)
|
262 |
+
|
263 |
+
fpn = FPN(out_ch=out_ch, wd=wd)(x)
|
264 |
+
|
265 |
+
features = [SSH(out_ch=out_ch, wd=wd)(f)
|
266 |
+
for i, f in enumerate(fpn)]
|
267 |
+
|
268 |
+
bbox_regressions = tf.concat(
|
269 |
+
[BboxHead(num_anchor, wd=wd)(f)
|
270 |
+
for i, f in enumerate(features)], axis=1)
|
271 |
+
landm_regressions = tf.concat(
|
272 |
+
[LandmarkHead(num_anchor, wd=wd, name=f'LandmarkHead_{i}')(f)
|
273 |
+
for i, f in enumerate(features)], axis=1)
|
274 |
+
classifications = tf.concat(
|
275 |
+
[ClassHead(num_anchor, wd=wd, name=f'ClassHead_{i}')(f)
|
276 |
+
for i, f in enumerate(features)], axis=1)
|
277 |
+
|
278 |
+
classifications = tf.keras.layers.Softmax(axis=-1)(classifications)
|
279 |
+
|
280 |
+
if training:
|
281 |
+
out = (bbox_regressions, landm_regressions, classifications)
|
282 |
+
else:
|
283 |
+
# only for batch size 1
|
284 |
+
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
|
285 |
+
[bbox_regressions[0],
|
286 |
+
landm_regressions[0],
|
287 |
+
tf.ones_like(classifications[0, :, 0][..., tf.newaxis]),
|
288 |
+
classifications[0, :, 1][..., tf.newaxis]], 1)
|
289 |
+
priors = prior_box_tf((tf.shape(inputs)[1], tf.shape(inputs)[2]), cfg['min_sizes'], cfg['steps'], cfg['clip'])
|
290 |
+
decode_preds = decode_tf(preds, priors, cfg['variances'])
|
291 |
+
|
292 |
+
selected_indices = tf.image.non_max_suppression(
|
293 |
+
boxes=decode_preds[:, :4],
|
294 |
+
scores=decode_preds[:, -1],
|
295 |
+
max_output_size=tf.shape(decode_preds)[0],
|
296 |
+
iou_threshold=iou_th,
|
297 |
+
score_threshold=score_th)
|
298 |
+
|
299 |
+
out = tf.gather(decode_preds, selected_indices)
|
300 |
+
|
301 |
+
return Model(inputs, out, name=name), Model(inputs, [bbox_regressions, landm_regressions, classifications], name=name + '_bb_only')
|
retinaface/ops.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from retinaface.anchor import decode_tf, prior_box_tf
|
2 |
+
import tensorflow as tf
|
3 |
+
|
4 |
+
|
5 |
+
def extract_detections(bbox_regressions, landm_regressions, classifications, image_sizes, iou_th=0.4, score_th=0.02):
|
6 |
+
min_sizes = [[16, 32], [64, 128], [256, 512]]
|
7 |
+
steps = [8, 16, 32]
|
8 |
+
variances = [0.1, 0.2]
|
9 |
+
preds = tf.concat( # [bboxes, landms, landms_valid, conf]
|
10 |
+
[bbox_regressions,
|
11 |
+
landm_regressions,
|
12 |
+
tf.ones_like(classifications[:, 0][..., tf.newaxis]),
|
13 |
+
classifications[:, 1][..., tf.newaxis]], 1)
|
14 |
+
priors = prior_box_tf(image_sizes, min_sizes, steps, False)
|
15 |
+
decode_preds = decode_tf(preds, priors, variances)
|
16 |
+
|
17 |
+
selected_indices = tf.image.non_max_suppression(
|
18 |
+
boxes=decode_preds[:, :4],
|
19 |
+
scores=decode_preds[:, -1],
|
20 |
+
max_output_size=tf.shape(decode_preds)[0],
|
21 |
+
iou_threshold=iou_th,
|
22 |
+
score_threshold=score_th)
|
23 |
+
|
24 |
+
out = tf.gather(decode_preds, selected_indices)
|
25 |
+
|
26 |
+
return out
|
27 |
+
|
utils/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (11.6 kB). View file
|
|
utils/utils.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from tensorflow.keras.models import model_from_json
|
3 |
+
from networks.layers import AdaIN, AdaptiveAttention
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import math
|
9 |
+
from skimage import transform as trans
|
10 |
+
from scipy.signal import convolve2d
|
11 |
+
from skimage.color import rgb2yuv, yuv2rgb
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def save_model_internal(model, path, name, num):
|
17 |
+
json_model = model.to_json()
|
18 |
+
with open(path + name + '.json', "w") as json_file:
|
19 |
+
json_file.write(json_model)
|
20 |
+
|
21 |
+
model.save_weights(path + name + '_' + str(num) + '.h5')
|
22 |
+
|
23 |
+
|
24 |
+
def load_model_internal(path, name, num):
|
25 |
+
with open(path + name + '.json', 'r') as json_file:
|
26 |
+
model_dict = json_file.read()
|
27 |
+
|
28 |
+
mod = model_from_json(model_dict, custom_objects={'AdaIN': AdaIN, 'AdaptiveAttention': AdaptiveAttention})
|
29 |
+
mod.load_weights(path + name + '_' + str(num) + '.h5')
|
30 |
+
|
31 |
+
return mod
|
32 |
+
|
33 |
+
|
34 |
+
def save_training_meta(state_dict, path, num):
|
35 |
+
with open(path + str(num) + '.json', 'w') as json_file:
|
36 |
+
json.dump(state_dict, json_file, indent=2)
|
37 |
+
|
38 |
+
|
39 |
+
def load_training_meta(path, num):
|
40 |
+
with open(path + str(num) + '.json', 'r') as json_file:
|
41 |
+
state_dict = json.load(json_file)
|
42 |
+
return state_dict
|
43 |
+
|
44 |
+
|
45 |
+
def log_info(sw, results_dict, iteration):
|
46 |
+
with sw.as_default():
|
47 |
+
for key in results_dict.keys():
|
48 |
+
tf.summary.scalar(key, results_dict[key], step=iteration)
|
49 |
+
|
50 |
+
|
51 |
+
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
|
52 |
+
[51.157, 89.050], [57.025, 89.702]],
|
53 |
+
dtype=np.float32)
|
54 |
+
# <--left
|
55 |
+
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
|
56 |
+
[45.177, 86.190], [64.246, 86.758]],
|
57 |
+
dtype=np.float32)
|
58 |
+
|
59 |
+
# ---frontal
|
60 |
+
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
|
61 |
+
[42.463, 87.010], [69.537, 87.010]],
|
62 |
+
dtype=np.float32)
|
63 |
+
|
64 |
+
# -->right
|
65 |
+
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
|
66 |
+
[48.167, 86.758], [67.236, 86.190]],
|
67 |
+
dtype=np.float32)
|
68 |
+
|
69 |
+
# -->right profile
|
70 |
+
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
|
71 |
+
[55.388, 89.702], [61.257, 89.050]],
|
72 |
+
dtype=np.float32)
|
73 |
+
|
74 |
+
src = np.array([src1, src2, src3, src4, src5])
|
75 |
+
src_map = {112: src, 224: src * 2}
|
76 |
+
|
77 |
+
# Left eye, right eye, nose, left mouth, right mouth
|
78 |
+
arcface_src = np.array(
|
79 |
+
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
80 |
+
[41.5493, 92.3655], [70.7299, 92.2041]],
|
81 |
+
dtype=np.float32)
|
82 |
+
|
83 |
+
arcface_src = np.expand_dims(arcface_src, axis=0)
|
84 |
+
|
85 |
+
|
86 |
+
def extract_face(img, bb, absolute_center, mode='arcface', extention_rate=0.05, debug=False):
|
87 |
+
"""Extract face from image given a bounding box"""
|
88 |
+
# bbox
|
89 |
+
x1, y1, x2, y2 = bb + 60
|
90 |
+
adjusted_absolute_center = (absolute_center[0] + 60, absolute_center[1] + 60)
|
91 |
+
if debug:
|
92 |
+
print(bb + 60)
|
93 |
+
x1, y1, x2, y2 = bb
|
94 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 3)
|
95 |
+
cv2.circle(img, absolute_center, 1, (255, 0, 255), 2)
|
96 |
+
Image.fromarray(img).show()
|
97 |
+
x1, y1, x2, y2 = bb + 60
|
98 |
+
# Pad image in case face is out of frame
|
99 |
+
padded_img = np.zeros(shape=(248, 248, 3), dtype=np.uint8)
|
100 |
+
padded_img[60:-60, 60:-60, :] = img
|
101 |
+
|
102 |
+
if debug:
|
103 |
+
cv2.rectangle(padded_img, (x1, y1), (x2, y2), (0, 255, 255), 3)
|
104 |
+
cv2.circle(padded_img, adjusted_absolute_center, 1, (255, 255, 255), 2)
|
105 |
+
Image.fromarray(padded_img).show()
|
106 |
+
|
107 |
+
y_len = abs(y1 - y2)
|
108 |
+
x_len = abs(x1 - x2)
|
109 |
+
|
110 |
+
new_len = (y_len + x_len) // 2
|
111 |
+
|
112 |
+
extension = int(new_len * extention_rate)
|
113 |
+
|
114 |
+
x_adjust = (x_len - new_len) // 2
|
115 |
+
y_adjust = (y_len - new_len) // 2
|
116 |
+
|
117 |
+
x_1_adjusted = x1 + x_adjust - extension
|
118 |
+
x_2_adjusted = x2 - x_adjust + extension
|
119 |
+
|
120 |
+
if mode == 'arcface':
|
121 |
+
y_1_adjusted = y1 - extension
|
122 |
+
y_2_adjusted = y2 - 2 * y_adjust + extension
|
123 |
+
else:
|
124 |
+
y_1_adjusted = y1 + 2 * y_adjust - extension
|
125 |
+
y_2_adjusted = y2 + extension
|
126 |
+
|
127 |
+
move_x = adjusted_absolute_center[0] - (x_1_adjusted + x_2_adjusted) // 2
|
128 |
+
move_y = adjusted_absolute_center[1] - (y_1_adjusted + y_2_adjusted) // 2
|
129 |
+
|
130 |
+
x_1_adjusted = x_1_adjusted + move_x
|
131 |
+
x_2_adjusted = x_2_adjusted + move_x
|
132 |
+
y_1_adjusted = y_1_adjusted + move_y
|
133 |
+
y_2_adjusted = y_2_adjusted + move_y
|
134 |
+
|
135 |
+
# print(y_1_adjusted, y_2_adjusted, x_1_adjusted, x_2_adjusted)
|
136 |
+
|
137 |
+
return padded_img[y_1_adjusted:y_2_adjusted, x_1_adjusted:x_2_adjusted]
|
138 |
+
|
139 |
+
|
140 |
+
def distance(a, b):
|
141 |
+
return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
|
142 |
+
|
143 |
+
|
144 |
+
def euclidean_distance(a, b):
|
145 |
+
x1 = a[0]; y1 = a[1]
|
146 |
+
x2 = b[0]; y2 = b[1]
|
147 |
+
return np.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))
|
148 |
+
|
149 |
+
|
150 |
+
def align_face(img, landmarks, debug=False):
|
151 |
+
nose, right_eye, left_eye = landmarks
|
152 |
+
|
153 |
+
left_eye_x = left_eye[0]
|
154 |
+
left_eye_y = left_eye[1]
|
155 |
+
|
156 |
+
right_eye_x = right_eye[0]
|
157 |
+
right_eye_y = right_eye[1]
|
158 |
+
|
159 |
+
center_eye = ((left_eye[0] + right_eye[0]) // 2, (left_eye[1] + right_eye[1]) // 2)
|
160 |
+
|
161 |
+
if left_eye_y < right_eye_y:
|
162 |
+
point_3rd = (right_eye_x, left_eye_y)
|
163 |
+
direction = -1
|
164 |
+
else:
|
165 |
+
point_3rd = (left_eye_x, right_eye_y)
|
166 |
+
direction = 1
|
167 |
+
|
168 |
+
if debug:
|
169 |
+
cv2.circle(img, point_3rd, 1, (255, 0, 0), 1)
|
170 |
+
cv2.circle(img, center_eye, 1, (255, 0, 0), 1)
|
171 |
+
|
172 |
+
cv2.line(img, right_eye, left_eye, (0, 0, 0), 1)
|
173 |
+
cv2.line(img, left_eye, point_3rd, (0, 0, 0), 1)
|
174 |
+
cv2.line(img, right_eye, point_3rd, (0, 0, 0), 1)
|
175 |
+
|
176 |
+
a = euclidean_distance(left_eye, point_3rd)
|
177 |
+
b = euclidean_distance(right_eye, left_eye)
|
178 |
+
c = euclidean_distance(right_eye, point_3rd)
|
179 |
+
|
180 |
+
cos_a = (b * b + c * c - a * a) / (2 * b * c)
|
181 |
+
|
182 |
+
angle = np.arccos(cos_a)
|
183 |
+
|
184 |
+
angle = (angle * 180) / np.pi
|
185 |
+
|
186 |
+
if direction == -1:
|
187 |
+
angle = 90 - angle
|
188 |
+
ang = math.radians(direction * angle)
|
189 |
+
else:
|
190 |
+
ang = math.radians(direction * angle)
|
191 |
+
angle = 0 - angle
|
192 |
+
|
193 |
+
M = cv2.getRotationMatrix2D((64, 64), angle, 1)
|
194 |
+
new_img = cv2.warpAffine(img, M, (128, 128),
|
195 |
+
flags=cv2.INTER_CUBIC)
|
196 |
+
|
197 |
+
rotated_nose = (int((nose[0] - 64) * np.cos(ang) - (nose[1] - 64) * np.sin(ang) + 64),
|
198 |
+
int((nose[0] - 64) * np.sin(ang) + (nose[1] - 64) * np.cos(ang) + 64))
|
199 |
+
|
200 |
+
rotated_center_eye = (int((center_eye[0] - 64) * np.cos(ang) - (center_eye[1] - 64) * np.sin(ang) + 64),
|
201 |
+
int((center_eye[0] - 64) * np.sin(ang) + (center_eye[1] - 64) * np.cos(ang) + 64))
|
202 |
+
|
203 |
+
abolute_center = (rotated_center_eye[0], (rotated_nose[1] + rotated_center_eye[1]) // 2)
|
204 |
+
|
205 |
+
if debug:
|
206 |
+
cv2.circle(new_img, rotated_nose, 1, (0, 0, 255), 1)
|
207 |
+
cv2.circle(new_img, rotated_center_eye, 1, (0, 0, 255), 1)
|
208 |
+
cv2.circle(new_img, abolute_center, 1, (0, 0, 255), 1)
|
209 |
+
|
210 |
+
return new_img, abolute_center
|
211 |
+
|
212 |
+
|
213 |
+
def estimate_norm(lmk, image_size=112, mode='arcface', shrink_factor=1.0):
|
214 |
+
assert lmk.shape == (5, 2)
|
215 |
+
tform = trans.SimilarityTransform()
|
216 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
217 |
+
min_M = []
|
218 |
+
min_index = []
|
219 |
+
min_error = float('inf')
|
220 |
+
src_factor = image_size / 112
|
221 |
+
if mode == 'arcface':
|
222 |
+
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
|
223 |
+
src = src * src_factor
|
224 |
+
else:
|
225 |
+
src = src_map[image_size] * src_factor
|
226 |
+
for i in np.arange(src.shape[0]):
|
227 |
+
tform.estimate(lmk, src[i])
|
228 |
+
M = tform.params[0:2, :]
|
229 |
+
results = np.dot(M, lmk_tran.T)
|
230 |
+
results = results.T
|
231 |
+
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
232 |
+
# print(error)
|
233 |
+
if error < min_error:
|
234 |
+
min_error = error
|
235 |
+
min_M = M
|
236 |
+
min_index = i
|
237 |
+
return min_M, min_index
|
238 |
+
|
239 |
+
|
240 |
+
def inverse_estimate_norm(lmk, t_lmk, image_size=112, mode='arcface', shrink_factor=1.0):
|
241 |
+
assert lmk.shape == (5, 2)
|
242 |
+
tform = trans.SimilarityTransform()
|
243 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
244 |
+
min_M = []
|
245 |
+
min_index = []
|
246 |
+
min_error = float('inf')
|
247 |
+
src_factor = image_size / 112
|
248 |
+
if mode == 'arcface':
|
249 |
+
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
|
250 |
+
src = src * src_factor
|
251 |
+
else:
|
252 |
+
src = src_map[image_size] * src_factor
|
253 |
+
for i in np.arange(src.shape[0]):
|
254 |
+
tform.estimate(t_lmk, lmk)
|
255 |
+
M = tform.params[0:2, :]
|
256 |
+
results = np.dot(M, lmk_tran.T)
|
257 |
+
results = results.T
|
258 |
+
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
259 |
+
# print(error)
|
260 |
+
if error < min_error:
|
261 |
+
min_error = error
|
262 |
+
min_M = M
|
263 |
+
min_index = i
|
264 |
+
return min_M, min_index
|
265 |
+
|
266 |
+
|
267 |
+
def norm_crop(img, landmark, image_size=112, mode='arcface', shrink_factor=1.0):
|
268 |
+
"""
|
269 |
+
Align and crop the image based of the facial landmarks in the image. The alignment is done with
|
270 |
+
a similarity transformation based of source coordinates.
|
271 |
+
:param img: Image to transform.
|
272 |
+
:param landmark: Five landmark coordinates in the image.
|
273 |
+
:param image_size: Desired output size after transformation.
|
274 |
+
:param mode: 'arcface' aligns the face for the use of Arcface facial recognition model. Useful for
|
275 |
+
both facial recognition tasks and face swapping tasks.
|
276 |
+
:param shrink_factor: Shrink factor that shrinks the source landmark coordinates. This will include more border
|
277 |
+
information around the face. Useful when you want to include more background information when performing face swaps.
|
278 |
+
The lower the shrink factor the more of the face is included. Default value 1.0 will align the image to be ready
|
279 |
+
for the Arcface recognition model, but usually omits part of the chin. Value of 0.0 would transform all source points
|
280 |
+
to the middle of the image, probably rendering the alignment procedure useless.
|
281 |
+
|
282 |
+
If you process the image with a shrink factor of 0.85 and then want to extract the identity embedding with arcface,
|
283 |
+
you simply do a central crop of factor 0.85 to yield same cropped result as using shrink factor 1.0. This will
|
284 |
+
reduce the resolution, the recommendation is to processed images to output resolutions higher than 112 is using
|
285 |
+
Arcface. This will make sure no information is lost by resampling the image after central crop.
|
286 |
+
:return: Returns the transformed image.
|
287 |
+
"""
|
288 |
+
M, pose_index = estimate_norm(landmark, image_size, mode, shrink_factor=shrink_factor)
|
289 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
290 |
+
return warped
|
291 |
+
|
292 |
+
|
293 |
+
def transform_landmark_points(M, points):
|
294 |
+
lmk_tran = np.insert(points, 2, values=np.ones(5), axis=1)
|
295 |
+
transformed_lmk = np.dot(M, lmk_tran.T)
|
296 |
+
transformed_lmk = transformed_lmk.T
|
297 |
+
|
298 |
+
return transformed_lmk
|
299 |
+
|
300 |
+
|
301 |
+
def multi_convolver(image, kernel, iterations):
|
302 |
+
if kernel == "Sharpen":
|
303 |
+
kernel = np.array([[0, -1, 0],
|
304 |
+
[-1, 5, -1],
|
305 |
+
[0, -1, 0]])
|
306 |
+
elif kernel == "Unsharp_mask":
|
307 |
+
kernel = np.array([[1, 4, 6, 4, 1],
|
308 |
+
[4, 16, 24, 16, 1],
|
309 |
+
[6, 24, -476, 24, 1],
|
310 |
+
[4, 16, 24, 16, 1],
|
311 |
+
[1, 4, 6, 4, 1]]) * (-1 / 256)
|
312 |
+
elif kernel == "Blur":
|
313 |
+
kernel = (1 / 16.0) * np.array([[1., 2., 1.],
|
314 |
+
[2., 4., 2.],
|
315 |
+
[1., 2., 1.]])
|
316 |
+
for i in range(iterations):
|
317 |
+
image = convolve2d(image, kernel, 'same', boundary='fill', fillvalue = 0)
|
318 |
+
return image
|
319 |
+
|
320 |
+
|
321 |
+
def convolve_rgb(image, kernel, iterations=1):
|
322 |
+
img_yuv = rgb2yuv(image)
|
323 |
+
img_yuv[:, :, 0] = multi_convolver(img_yuv[:, :, 0], kernel,
|
324 |
+
iterations)
|
325 |
+
final_image = yuv2rgb(img_yuv)
|
326 |
+
|
327 |
+
return final_image.astype('float32')
|
328 |
+
|
329 |
+
|
330 |
+
def generate_mask_from_landmarks(lms, im_size):
|
331 |
+
blend_mask_lm = np.zeros(shape=(im_size, im_size, 3), dtype='float32')
|
332 |
+
|
333 |
+
# EYES
|
334 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
335 |
+
(int(lms[0][0]), int(lms[0][1])), 12, (255, 255, 255), 30)
|
336 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
337 |
+
(int(lms[1][0]), int(lms[1][1])), 12, (255, 255, 255), 30)
|
338 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
339 |
+
(int((lms[0][0] + lms[1][0]) / 2), int((lms[0][1] + lms[1][1]) / 2)),
|
340 |
+
16, (255, 255, 255), 65)
|
341 |
+
|
342 |
+
# NOSE
|
343 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
344 |
+
(int(lms[2][0]), int(lms[2][1])), 5, (255, 255, 255), 5)
|
345 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
346 |
+
(int((lms[0][0] + lms[1][0]) / 2), int(lms[2][1])), 16, (255, 255, 255), 100)
|
347 |
+
|
348 |
+
# MOUTH
|
349 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
350 |
+
(int(lms[3][0]), int(lms[3][1])), 6, (255, 255, 255), 30)
|
351 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
352 |
+
(int(lms[4][0]), int(lms[4][1])), 6, (255, 255, 255), 30)
|
353 |
+
|
354 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
355 |
+
(int((lms[3][0] + lms[4][0]) / 2), int((lms[3][1] + lms[4][1]) / 2)),
|
356 |
+
16, (255, 255, 255), 40)
|
357 |
+
return blend_mask_lm
|
358 |
+
|
359 |
+
|
360 |
+
def display_distance_text(im, distance, lms, im_w, im_h, scale=2):
|
361 |
+
blended_insert = cv2.putText(im, str(distance)[:4],
|
362 |
+
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
|
363 |
+
cv2.FONT_HERSHEY_SIMPLEX, scale * 0.5, (0.08, 0.16, 0.08), int(scale * 2))
|
364 |
+
blended_insert = cv2.putText(blended_insert, str(distance)[:4],
|
365 |
+
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
|
366 |
+
cv2.FONT_HERSHEY_SIMPLEX, scale* 0.5, (0.3, 0.7, 0.32), int(scale * 1))
|
367 |
+
return blended_insert
|
368 |
+
|
369 |
+
|
370 |
+
def get_lm(annotation, im_w, im_h):
|
371 |
+
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
|
372 |
+
[annotation[6] * im_w, annotation[7] * im_h],
|
373 |
+
[annotation[8] * im_w, annotation[9] * im_h],
|
374 |
+
[annotation[10] * im_w, annotation[11] * im_h],
|
375 |
+
[annotation[12] * im_w, annotation[13] * im_h]],
|
376 |
+
dtype=np.float32)
|
377 |
+
return lm_align
|