File size: 5,768 Bytes
7411847
6d7a85e
 
7411847
 
 
 
 
84f536a
7411847
 
9a34cda
7411847
9a34cda
7411847
9a34cda
 
 
 
 
 
 
 
 
 
24806ea
 
9a34cda
7411847
84f536a
 
9a34cda
84f536a
 
 
 
 
9a34cda
84f536a
 
9a34cda
 
7411847
 
84f536a
 
 
 
 
 
8fcd96c
6d7a85e
 
 
 
8fcd96c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7a85e
84f536a
5669002
 
8fcd96c
6d7a85e
dedfb73
 
6d7a85e
 
 
 
dedfb73
 
6d7a85e
84f536a
 
 
 
7411847
 
84f536a
 
 
 
 
 
 
 
 
b0337e1
9a34cda
 
0e46dc8
 
f765ec9
0e46dc8
 
 
 
 
9a34cda
 
 
5669002
 
a583aee
 
 
d8585e9
a583aee
 
 
d8585e9
5669002
b0337e1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# app.py
import json

import streamlit as st
import glob
import os
from datetime import datetime

#st.set_page_config(layout="wide")
st.title('Meta Open LLM leaderboard')

directories = os.listdir("./data")

#data_dir = directories[0]

def format_dir_date(data_dir):
    # Extracting date and time information from the path
    parsed_date = datetime.strptime(data_dir, "%Y%m%d_%H%M")

    # Formatting the parsed date
    return  parsed_date.strftime("%b %d, %Y %H:%M")

data_dir = st.selectbox(
    'Select different Date',
    directories,
    format_func=format_dir_date,
    index=len(directories)-1
    )

captions_map = {
    "hg_average_to_agentbench_compare.png": "HF to AgentBench compare",
    "hg_average_to_opencompass_compare.png": "HF to OpenCompass</a> compare",
    "hg_average_to_mt_bench_compare.png": "HF to MT-Bench compare",
    "hg_average_to_mosaic_compare.png": "HF to MosaicML compare",
    "hg_average_to_alpacaeval_compare.png": "HF to AlpacaEval compare"
}

st.write("Generated on: <b>" + format_dir_date(data_dir) + "</b>", unsafe_allow_html=True)
st.divider()

data_path = './data/' + data_dir

imgs = glob.glob(os.path.join(data_path, '*.png'))

# Extracting images that start with "hf_llm_diagram"
hf_llm_diagrams = [img for img in imgs if 'hf_llm_diagram' in os.path.basename(img)]

# Getting the remaining images
remaining_imgs = [img for img in imgs if 'hf_llm_diagram' not in os.path.basename(img)]

def print_model_list(file_name, st, split_into_two=False):
    file_path = file_name[:-4] + '.json'
    # Read the list from the JSON file
    with open(file_path, 'r') as file:
        model_id_list_loaded = json.load(file)
        midpoint = len(model_id_list_loaded) // 2 + (len(model_id_list_loaded) % 2)  # Calculate the midpoint

        # Split the list into two parts
        left_list = model_id_list_loaded[:midpoint]
        right_list = model_id_list_loaded[midpoint:]

        # Generate HTML for the left column
        left_html = ""
        for model_id in left_list:
            model_id_trunc = model_id if len(model_id) <= 35 else '...' + model_id[-35:]
            left_html += f'<li><a href="https://huggingface.co/{model_id}">{model_id_trunc}</a></li>'


        # Generate HTML for the right column
        right_html = ""
        for model_id in right_list:
            model_id_trunc = model_id if len(model_id) <= 35 else '...' + model_id[-35:]
            right_html += f'<li><a href="https://huggingface.co/{model_id}">{model_id_trunc}</a></li>'

        final_html = ""
        if(split_into_two):
            final_html  = "<ul>"
            final_html  += left_html
            final_html  += "</ul>"
            cols = st.columns(2)
            cols[0].write(final_html, unsafe_allow_html=True)
            final_html  = "<ul>"
            final_html  += right_html
            final_html  += "</ul>"
            cols[1].write(final_html, unsafe_allow_html=True)
        else:
            final_html  = "<ul>"
            final_html  += left_html
            final_html  += right_html
            final_html  += "</ul>"
            st.write(final_html, unsafe_allow_html=True)

st.write("HuggingFace Open LLM leaderboard by Model Size")
st.image(hf_llm_diagrams[0],use_column_width="auto")

print_model_list(hf_llm_diagrams[0],st,True)

cols = st.columns(2)
cols[0].image(hf_llm_diagrams[1],caption="Other or commercially permissive licenses only", use_column_width="auto")


print_model_list(hf_llm_diagrams[1],cols[0])

cols[1].image(hf_llm_diagrams[2],caption="Commercially permissive license only", use_column_width="auto")

print_model_list(hf_llm_diagrams[2],cols[1])

st.divider()
st.write("HuggingFace and Other Leaderboards: A Comparative Model Evaluation")
st.caption("Only models evaluated on both leaderboards are included.")
cols = st.columns(2)

for i, img in enumerate(remaining_imgs):
    # Extract the filename from the full image path
    filename = os.path.basename(img)

    # Get the caption from the captions_map dictionary
    caption = captions_map.get(filename, "")  # If no caption is found, it will default to an empty string

    # Display the image with the caption
    cols[i % 2].image(img, caption=caption, width=None)

st.write(
    """
    <p>Leaderboards tracked:</p>
     <ul>
        <li><a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">Hugging Face Open LLM</a></li>
        <li><a href="https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard">MT-Bench</a> GPT4 judged evaluation of models</li>
        <li><a href="https://tatsu-lab.github.io/alpaca_eval/">AlpacaEval</a> GPT4 judged evaluation of models</li>
        <li><a href="https://www.mosaicml.com/llm-evaluation">MosaicML</a> Balanced set of static benchmarks</li>
        <li><a href="https://opencompass.org.cn/leaderboard-llm">OpenCompass</a> Balanced set of static benchmarks</li>
        <li><a href="https://llmbench.ai/data">AgentBench</a> Benchmark evaluating Agent abilities</li>
        </ul>
    """, unsafe_allow_html=True
)
st.divider()

cols = st.columns(2)
cols[0].write("TruthfulQA at 10% for HuggingFace Open LLM leaderboard by Model Size")
cols[0].image(hf_llm_diagrams[3],use_column_width="auto")
print_model_list(hf_llm_diagrams[3],cols[0],False)

cols[1].write("ARC at 50% and MMLU at 50% for HuggingFace Open LLM leaderboard by Model Size")
cols[1].image(hf_llm_diagrams[4],use_column_width="auto")
print_model_list(hf_llm_diagrams[4],cols[1],False)

st.divider()
st.subheader('About')
st.write('This meta leaderboard is built and maintained by Felix Zaslavskiy. For feedback, correction, suggestions please reach out on X at <a href="https://twitter.com/FZaslavskiy" >@FZaslavskiy</a> or here via community discussions.', unsafe_allow_html=True)