# app.py
import json
import streamlit as st
import glob
import os
from datetime import datetime
st.set_page_config(layout="wide")
st.title('Meta Open LLM leaderboard')
st.write("Combine data from various open LLM leaderboards into one useful visualization page")
st.write("", unsafe_allow_html=True)
directories = os.listdir("./data")
def format_dir_date(data_dir):
# Extracting date and time information from the path
parsed_date = datetime.strptime(data_dir, "%Y%m%d_%H%M")
# Formatting the parsed date
return parsed_date.strftime("%b %d, %Y %H:%M")
def print_model_list(file_name, st, split_into_two=False):
file_path = file_name[:-4] + '.json'
# Read the list from the JSON file
with open(file_path, 'r') as file:
model_id_list_loaded = json.load(file)
midpoint = len(model_id_list_loaded) // 2 + (len(model_id_list_loaded) % 2) # Calculate the midpoint
# Split the list into two parts
left_list = model_id_list_loaded[:midpoint]
right_list = model_id_list_loaded[midpoint:]
# Generate HTML for the left column
left_html = ""
for model_id in left_list:
model_id_trunc = model_id if len(model_id) <= 35 else '...' + model_id[-35:]
left_html += f'
{model_id_trunc}'
# Generate HTML for the right column
right_html = ""
for model_id in right_list:
model_id_trunc = model_id if len(model_id) <= 35 else '...' + model_id[-35:]
right_html += f'{model_id_trunc}'
final_html = ""
if(split_into_two):
final_html = ""
final_html += left_html
final_html += "
"
cols = st.columns(2)
cols[0].write(final_html, unsafe_allow_html=True)
final_html = ""
final_html += right_html
final_html += "
"
cols[1].write(final_html, unsafe_allow_html=True)
else:
final_html = ""
final_html += left_html
final_html += right_html
final_html += "
"
st.write(final_html, unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
data_dir = st.selectbox(
'Select different data generation date',
directories,
format_func=format_dir_date,
index=len(directories)-1,
)
with col2:
compare_mode = st.checkbox('Enable compare to different date')
if compare_mode:
compare_data_dir = st.selectbox(
'Select date for comparison',
directories,
format_func=format_dir_date,
index=len(directories)-1,
)
captions_map = {
"hg_average_to_agentbench_compare.png": "HF to AgentBench compare",
"hg_average_to_opencompass_compare.png": "HF to OpenCompass compare",
"hg_average_to_mt_bench_compare.png": "HF to MT-Bench compare",
"hg_average_to_mosaic_compare.png": "HF to MosaicML compare",
"hg_average_to_alpacaeval_compare.png": "HF to AlpacaEval compare"
}
with col1:
st.write("Generated on: " + format_dir_date(data_dir) + "
", unsafe_allow_html=True)
data_path = './data/' + data_dir
# Adjust the data path loading logic
if compare_mode:
# Side by side compare:
compare_data_path = './data/' + compare_data_dir
# Load images from both directories
imgs = glob.glob(os.path.join(data_path, '*.png'))
compare_imgs = glob.glob(os.path.join(compare_data_path, '*.png'))
# Extracting images that start with specific keywords from both sets
def extract_images(keyword, img_list):
return [img for img in img_list if keyword in os.path.basename(img)]
hf_llm_diagrams = extract_images('hf_llm_diagram', imgs)
bigcode_diagrams = extract_images('bigcode', imgs)
mt_bench_diagrams = extract_images('lmsys_leaderboard_mt_bench', imgs)
arena_diagrams = extract_images('lmsys_leaderboard_arena', imgs)
opencompass_diagrams = extract_images('opencompass_leaderboard', imgs)
compare_hf_llm_diagrams = extract_images('hf_llm_diagram', compare_imgs)
compare_bigcode_diagrams = extract_images('bigcode', compare_imgs)
compare_mt_bench_diagrams = extract_images('lmsys_leaderboard_mt_bench', compare_imgs)
compare_arena_diagrams = extract_images('lmsys_leaderboard_arena', compare_imgs)
compare_opencompass_diagrams = extract_images('opencompass_leaderboard', compare_imgs)
# Display each category side by side
def display_side_by_side(diagrams1, diagrams2, title):
st.subheader(title, divider=True)
for d1, d2 in zip(diagrams1, diagrams2):
cols = st.columns(2)
cols[0].image(d1, use_column_width="auto")
cols[1].image(d2, use_column_width="auto")
# Displaying HuggingFace LLM Leaderboard
display_side_by_side(hf_llm_diagrams, compare_hf_llm_diagrams, "HuggingFace Open LLM leaderboard by Model Size")
# Displaying Big Code Models Leaderboard
display_side_by_side(bigcode_diagrams, compare_bigcode_diagrams, "Big Code Models Leaderboard")
# Displaying MT-Bench Models Leaderboard
display_side_by_side(mt_bench_diagrams, compare_mt_bench_diagrams, "MT-Bench Models Leaderboard")
# Displaying Arena Models Leaderboard
display_side_by_side(arena_diagrams, compare_arena_diagrams, "LMSYS Arena Elo Models Leaderboard")
# Displaying OpenCompass Models Leaderboard
display_side_by_side(opencompass_diagrams, compare_opencompass_diagrams, "OpenCompass Models Leaderboard")
# Extracting remaining images from both sets
remaining_imgs = list(set(imgs) - set(hf_llm_diagrams) - set(bigcode_diagrams) - set(mt_bench_diagrams) - set(opencompass_diagrams))
compare_remaining_imgs = list(set(compare_imgs) - set(compare_hf_llm_diagrams) - set(compare_bigcode_diagrams) - set(compare_mt_bench_diagrams) - set(compare_opencompass_diagrams))
st.subheader("HuggingFace and Other Leaderboards: A Comparative Model Evaluation", divider=True)
st.caption("Only models evaluated on both leaderboards are included.")
# Display remaining images side by side
for img, compare_img in zip(remaining_imgs, compare_remaining_imgs):
cols = st.columns(2)
# Extract the filename and caption for the first image
filename = os.path.basename(img)
caption = captions_map.get(filename, "")
# Extract the filename and caption for the comparison image
compare_filename = os.path.basename(compare_img)
compare_caption = captions_map.get(compare_filename, "")
# Display the images with captions
cols[0].image(img, caption=caption, width=None)
cols[1].image(compare_img, caption=compare_caption, width=None)
else:
imgs = glob.glob(os.path.join(data_path, '*.png'))
# Extracting images that start with "hf_llm_diagram"
hf_llm_diagrams = [img for img in imgs if 'hf_llm_diagram' in os.path.basename(img)]
bigcode_diagrams = [img for img in imgs if 'bigcode' in os.path.basename(img)]
mt_bench_diagrams = [img for img in imgs if 'lmsys_leaderboard_mt_bench' in os.path.basename(img)]
arena_diagrams = [img for img in imgs if 'lmsys_leaderboard_arena' in os.path.basename(img)]
opencompass_diagrams = [img for img in imgs if 'opencompass_leaderboard' in os.path.basename(img)]
# Getting the remaining images
remaining_imgs = list(set(imgs) - set(hf_llm_diagrams) - set(bigcode_diagrams) - set(mt_bench_diagrams) - set(arena_diagrams) - set(opencompass_diagrams))
st.subheader("HuggingFace Open LLM leaderboard by Model Size", divider=True)
cols = st.columns(2)
cols[0].image(hf_llm_diagrams[0], caption="Main chart using all the models", use_column_width="auto")
print_model_list(hf_llm_diagrams[0],st, True)
st.write("", unsafe_allow_html=True)
cols = st.columns(2)
cols[0].image(hf_llm_diagrams[1],caption="Other or commercially permissive licenses only", use_column_width="auto")
print_model_list(hf_llm_diagrams[1],cols[0])
cols[1].image(hf_llm_diagrams[2],caption="Commercially permissive license only", use_column_width="auto")
print_model_list(hf_llm_diagrams[2],cols[1])
st.write("", unsafe_allow_html=True)
cols = st.columns(2)
cols[0].image(hf_llm_diagrams[3],caption="TruthfulQA at 10% for HuggingFace Open LLM leaderboard by Model Size", use_column_width="auto")
print_model_list(hf_llm_diagrams[3],cols[0],False)
cols[1].image(hf_llm_diagrams[4],caption="ARC at 50% and MMLU at 50% for HuggingFace Open LLM leaderboard by Model Size", use_column_width="auto")
print_model_list(hf_llm_diagrams[4],cols[1],False)
st.subheader("Big Code Models Leaderboard", divider=True)
cols = st.columns(2)
cols[0].image(bigcode_diagrams[0], use_column_width="auto")
print_model_list(bigcode_diagrams[0],st,True)
st.subheader("MT-Bench Models Leaderboard", divider=True)
cols = st.columns(2)
cols[0].image(mt_bench_diagrams[0], use_column_width="auto")
print_model_list(mt_bench_diagrams[0],st,True)
st.subheader("LMSYS Arena Elo Models Leaderboard", divider=True)
cols = st.columns(2)
cols[0].image(arena_diagrams[0], use_column_width="auto")
print_model_list(arena_diagrams[0],st,True)
st.subheader("OpenCompass Models Leaderboard", divider=True)
cols = st.columns(2)
cols[0].image(opencompass_diagrams[0], use_column_width="auto")
print_model_list(opencompass_diagrams[0],st,True)
st.subheader("HuggingFace and Other Leaderboards: A Comparative Model Evaluation", divider=True)
st.caption("Only models evaluated on both leaderboards are included.")
cols = st.columns(2)
for i, img in enumerate(remaining_imgs):
# Extract the filename from the full image path
filename = os.path.basename(img)
# Get the caption from the captions_map dictionary
caption = captions_map.get(filename, "") # If no caption is found, it will default to an empty string
# Display the image with the caption
cols[i % 2].image(img, caption=caption, width=None)
st.write(
"""
Leaderboards tracked:
HuggingFace models that have been flagged as contaminated or do not provide any model card information are excluded.
""", unsafe_allow_html=True
)
st.subheader('About', divider=True)
st.write('This meta leaderboard is built and maintained by Felix Zaslavskiy. For feedback, correction, suggestions please reach out on X at @FZaslavskiy or here via community discussions.', unsafe_allow_html=True)