felix commited on
Commit
04c8a7b
·
1 Parent(s): 3004443
Files changed (3) hide show
  1. data_set_training.csv +1 -0
  2. dev_set_training.csv +5 -0
  3. train.py +170 -1
data_set_training.csv CHANGED
@@ -1,3 +1,4 @@
 
1
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Rd, Ste 2511-W, Holmdel NJ 07734|1
2
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Road, Ste 2511 W, Holmdel NJ 07734|1
3
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Rd, Suite 2511-W, Holmdel NJ 07734|1
 
1
+ address1|address2|are_same
2
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Rd, Ste 2511-W, Holmdel NJ 07734|1
3
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Road, Ste 2511 W, Holmdel NJ 07734|1
4
  101 Crawfords Corner Road, Suite 2511-W, Holmdel NJ 07734|101 Crawfords Corner Rd, Suite 2511-W, Holmdel NJ 07734|1
dev_set_training.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ address1|address2|are_same
2
+ 1555 Ruth Rd STE 5, North Brunswick Township, NJ 08902|1555 Ruth Road Suit 5, North Brunswick Township, NJ 08902|1
3
+ 1555 Ruth Rd STE 5, North Brunswick Township, NJ 08902|1558 Ruth Road STE 5, North Brunswick Township, NJ 08902|0
4
+ 1061 Schmidt Ln, North Brunswick Township, NJ 08902|1061 Schmidt Lane, North Brunswick Township, NJ 08902|1
5
+ 1061 Schmidt Ln, North Brunswick Township, NJ 08902|934 Schmidt Ln, North Brunswick Township, NJ 08902|0
train.py CHANGED
@@ -1,4 +1,173 @@
1
  # Will be based on
2
  # ConstructiveLoss function.
3
  #
4
- # https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/quora_duplicate_questions/training_OnlineContrastiveLoss.py
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Will be based on
2
  # ConstructiveLoss function.
3
  #
4
+ # https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/quora_duplicate_questions/training_OnlineContrastiveLoss.py
5
+
6
+ from torch.utils.data import DataLoader
7
+ from sentence_transformers import losses, util
8
+ from sentence_transformers import LoggingHandler, SentenceTransformer, evaluation
9
+ from sentence_transformers.readers import InputExample
10
+ import logging
11
+ from datetime import datetime
12
+ import csv
13
+ import os
14
+ from zipfile import ZipFile
15
+ import random
16
+
17
+ #### Just some code to print debug information to stdout
18
+ logging.basicConfig(format='%(asctime)s - %(message)s',
19
+ datefmt='%Y-%m-%d %H:%M:%S',
20
+ level=logging.INFO,
21
+ handlers=[LoggingHandler()])
22
+ logger = logging.getLogger(__name__)
23
+ #### /print debug information to stdout
24
+
25
+
26
+ #As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
27
+ model = SentenceTransformer('albert-base-v2')
28
+ num_epochs = 10
29
+ train_batch_size = 8
30
+
31
+ #As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
32
+ distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
33
+
34
+ #Negative pairs should have a distance of at least 0.5
35
+ margin = 0.5
36
+
37
+ dataset_path = "data_set_training.csv"
38
+ model_save_path = 'output/training_OnlineConstrativeLoss-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
39
+
40
+ os.makedirs(model_save_path, exist_ok=True)
41
+
42
+ ######### Read train data ##########
43
+ # Read train data
44
+ train_samples = []
45
+ with open(dataset_path, encoding='utf8') as fIn:
46
+ reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
47
+ for row in reader:
48
+ sample = InputExample(texts=[row['address1'], row['address2']], label=int(row['are_same']))
49
+ train_samples.append(sample)
50
+
51
+
52
+ train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
53
+ train_loss = losses.OnlineContrastiveLoss(model=model, distance_metric=distance_metric, margin=margin)
54
+
55
+
56
+ ################### Development Evaluators ##################
57
+ # We add 3 evaluators, that evaluate the model on Duplicate Questions pair classification,
58
+ # Duplicate Questions Mining, and Duplicate Questions Information Retrieval
59
+ #evaluators = []
60
+
61
+ ###### Classification ######
62
+ # Given (quesiton1, question2), is this a duplicate or not?
63
+ # The evaluator will compute the embeddings for both questions and then compute
64
+ # a cosine similarity. If the similarity is above a threshold, we have a duplicate.
65
+ dev_sentences1 = []
66
+ dev_sentences2 = []
67
+ dev_labels = []
68
+ with open( "dev_set_training.csv", encoding='utf8') as fIn:
69
+ reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
70
+ for row in reader:
71
+ dev_sentences1.append(row['address1'])
72
+ dev_sentences2.append(row['address2'])
73
+ dev_labels.append(int(row['are_same']))
74
+
75
+
76
+ binary_acc_evaluator = evaluation.BinaryClassificationEvaluator(dev_sentences1, dev_sentences2, dev_labels)
77
+ #evaluators.append(binary_acc_evaluator)
78
+
79
+
80
+
81
+ ###### Duplicate Questions Mining ######
82
+ # Given a large corpus of questions, identify all duplicates in that corpus.
83
+
84
+ # For faster processing, we limit the development corpus to only 10,000 sentences.
85
+ #max_dev_samples = 10000
86
+ #dev_sentences = {}
87
+ #dev_duplicates = []
88
+ #with open("dev_corpus.csv", encoding='utf8') as fIn:
89
+ # reader = csv.DictReader(fIn, delimiter='|', quoting=csv.QUOTE_NONE)
90
+ # for row in reader:
91
+ # dev_sentences[row['qid']] = row['question']
92
+ #
93
+ # if len(dev_sentences) >= max_dev_samples:
94
+ # break
95
+ #
96
+ #with open(os.path.join(dataset_path, "duplicate-mining/dev_duplicates.tsv"), encoding='utf8') as fIn:
97
+ # reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
98
+ # for row in reader:
99
+ # if row['qid1'] in dev_sentences and row['qid2'] in dev_sentences:
100
+ # dev_duplicates.append([row['qid1'], row['qid2']])
101
+ #
102
+ #
103
+ ## The ParaphraseMiningEvaluator computes the cosine similarity between all sentences and
104
+ ## extracts a list with the pairs that have the highest similarity. Given the duplicate
105
+ ## information in dev_duplicates, it then computes and F1 score how well our duplicate mining worked
106
+ #paraphrase_mining_evaluator = evaluation.ParaphraseMiningEvaluator(dev_sentences, dev_duplicates, name='dev')
107
+ #evaluators.append(paraphrase_mining_evaluator)
108
+ #
109
+ #
110
+ ####### Duplicate Questions Information Retrieval ######
111
+ ## Given a question and a large corpus of thousands questions, find the most relevant (i.e. duplicate) question
112
+ ## in that corpus.
113
+ #
114
+ ## For faster processing, we limit the development corpus to only 10,000 sentences.
115
+ #max_corpus_size = 100000
116
+ #
117
+ #ir_queries = {} #Our queries (qid => question)
118
+ #ir_needed_qids = set() #QIDs we need in the corpus
119
+ #ir_corpus = {} #Our corpus (qid => question)
120
+ #ir_relevant_docs = {} #Mapping of relevant documents for a given query (qid => set([relevant_question_ids])
121
+ #
122
+ #with open(os.path.join(dataset_path, 'information-retrieval/dev-queries.tsv'), encoding='utf8') as fIn:
123
+ # next(fIn) #Skip header
124
+ # for line in fIn:
125
+ # qid, query, duplicate_ids = line.strip().split('\t')
126
+ # duplicate_ids = duplicate_ids.split(',')
127
+ # ir_queries[qid] = query
128
+ # ir_relevant_docs[qid] = set(duplicate_ids)
129
+ #
130
+ # for qid in duplicate_ids:
131
+ # ir_needed_qids.add(qid)
132
+ #
133
+ ## First get all needed relevant documents (i.e., we must ensure, that the relevant questions are actually in the corpus
134
+ #distraction_questions = {}
135
+ #with open(os.path.join(dataset_path, 'information-retrieval/corpus.tsv'), encoding='utf8') as fIn:
136
+ # next(fIn) #Skip header
137
+ # for line in fIn:
138
+ # qid, question = line.strip().split('\t')
139
+ #
140
+ # if qid in ir_needed_qids:
141
+ # ir_corpus[qid] = question
142
+ # else:
143
+ # distraction_questions[qid] = question
144
+ #
145
+ ## Now, also add some irrelevant questions to fill our corpus
146
+ #other_qid_list = list(distraction_questions.keys())
147
+ #random.shuffle(other_qid_list)
148
+ #
149
+ #for qid in other_qid_list[0:max(0, max_corpus_size-len(ir_corpus))]:
150
+ # ir_corpus[qid] = distraction_questions[qid]
151
+ #
152
+ ##Given queries, a corpus and a mapping with relevant documents, the InformationRetrievalEvaluator computes different IR
153
+ ## metrices. For our use case MRR@k and Accuracy@k are relevant.
154
+ #ir_evaluator = evaluation.InformationRetrievalEvaluator(ir_queries, ir_corpus, ir_relevant_docs)
155
+ #
156
+ #evaluators.append(ir_evaluator)
157
+ #
158
+ ## Create a SequentialEvaluator. This SequentialEvaluator runs all three evaluators in a sequential order.
159
+ ## We optimize the model with respect to the score from the last evaluator (scores[-1])
160
+ #seq_evaluator = evaluation.SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1])
161
+ #
162
+ #
163
+ #logger.info("Evaluate model without training")
164
+ #seq_evaluator(model, epoch=0, steps=0, output_path=model_save_path)
165
+
166
+
167
+ # Train the model
168
+ model.fit(train_objectives=[(train_dataloader, train_loss)],
169
+ evaluator=binary_acc_evaluator,
170
+ epochs=num_epochs,
171
+ warmup_steps=5,
172
+ output_path=model_save_path
173
+ )