Feliks Zaslavskiy commited on
Commit
f248e14
1 Parent(s): ecdea0f
Files changed (3) hide show
  1. app.py +2 -1
  2. quick_evaluate.py +1 -0
  3. train.py +4 -2
app.py CHANGED
@@ -15,7 +15,8 @@ from io import BytesIO
15
 
16
  # For baseline 'sentence-transformers/paraphrase-albert-base-v2'
17
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-14_01-24-44'
18
- model_name = 'output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
 
19
 
20
  similarity_threshold = 0.9
21
 
 
15
 
16
  # For baseline 'sentence-transformers/paraphrase-albert-base-v2'
17
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-14_01-24-44'
18
+ model_name = 'output/training_OnlineConstrativeLoss-2023-03-17_23-15-52'
19
+ model_name = 'output/training_OnlineConstrativeLoss-2023-03-17_23-50-15'
20
 
21
  similarity_threshold = 0.9
22
 
quick_evaluate.py CHANGED
@@ -13,6 +13,7 @@ model_name = 'output/training_OnlineConstrativeLoss-2023-03-10_11-17-15'
13
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
14
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
15
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
 
16
  model_sbert = SentenceTransformer(model_name)
17
 
18
 
 
13
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35'
14
  model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19'
15
  model_name='output/training_OnlineConstrativeLoss-2023-03-17_16-10-39'
16
+ model_name='output/training_OnlineConstrativeLoss-2023-03-17_23-15-52'
17
  model_sbert = SentenceTransformer(model_name)
18
 
19
 
train.py CHANGED
@@ -24,10 +24,12 @@ logger = logging.getLogger(__name__)
24
 
25
 
26
  #As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
27
- model = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2')
 
 
28
  num_epochs = 12
29
  # Smaller is generally better more accurate results.
30
- train_batch_size = 5
31
 
32
  #As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
33
  distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE
 
24
 
25
 
26
  #As base model, we use DistilBERT-base that was pre-trained on NLI and STSb data
27
+ model_name ='sentence-transformers/paraphrase-albert-base-v2'
28
+ model_name = 'sentence-transformers/all-mpnet-base-v1'
29
+ model = SentenceTransformer(model_name)
30
  num_epochs = 12
31
  # Smaller is generally better more accurate results.
32
+ train_batch_size = 10
33
 
34
  #As distance metric, we use cosine distance (cosine_distance = 1-cosine_similarity)
35
  distance_metric = losses.SiameseDistanceMetric.COSINE_DISTANCE