#from transformers import AlbertTokenizer, AlbertModel from sklearn.metrics.pairwise import cosine_similarity from sentence_transformers import SentenceTransformer #This is a quick evaluation on a few cases # base # large #tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') #model = AlbertModel.from_pretrained("albert-base-v2") #'sentence-transformers/paraphrase-albert-base-v2' model_name = 'output/training_OnlineConstrativeLoss-2023-03-10_11-17-15' model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_00-24-35' model_name = 'output/training_OnlineConstrativeLoss-2023-03-11_01-00-19' model_name='output/training_OnlineConstrativeLoss-2023-03-12_00-42-41' model_sbert = SentenceTransformer(model_name) def get_sbert_embedding(input_text): embedding = model_sbert.encode(input_text) return embedding.tolist() a1 = "65 Mountain Blvd Ext, Warren, NJ 07059" a2 = "112 Mountain Blvd Ext, Warren, NJ 07059" a3 = "1677 NJ-27 #2, Edison, NJ 08817" a4 = "5078 S Maryland Pkwy, Las Vegas, NV 89119" a5 = "65 Mountain Boulevard Ext, Warren, NJ 07059" a6 = "123 Broad St, New York, NY, 10304-2345" a7 = "440 TECHNOLOGY CENTER DRIVE, Boston, MA 10034" a8 = "200 Technology Center Drive, Boston, MA 10034" a8x= "87 Technology Center Drive, Boston, MA 10034" a9 = "440 Technology Center Dr., Boston, MA 10034-0345" a10 = "440 Technology Center Dr., Boston, MA 10034" a11="872 Route 13, Cortlandville NY 13045" a12="87-2 Route 13, Cortlandville NY 13045" a13="87-5 Route 13, Cortlandville NY 13045" a14="257 37 US Rt 11, Evans Mills NY 13637" a15="257-37 US Route 11, Evans Mills NY 13637" #def get_embedding(input_text): # encoded_input = tokenizer(input_text, return_tensors='pt') # input_ids = encoded_input.input_ids # input_num_tokens = input_ids.shape[1] # # print( "Number of input tokens: " + str(input_num_tokens)) # print("Length of input: " + str(len(input_text))) # # list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) # # print( "Tokens : " + ' '.join(list_of_tokens)) # with torch.no_grad(): # # outputs = model(**encoded_input) # last_hidden_states = outputs[0] # sentence_embedding = torch.mean(last_hidden_states[0], dim=0) # #sentence_embedding = output.last_hidden_state[0][0] # return sentence_embedding.tolist() e1 = get_sbert_embedding(a1) e2 = get_sbert_embedding(a2) #e3 = get_sbert_embedding(a3) e4 = get_sbert_embedding(a4) e5 = get_sbert_embedding(a5) e6 = get_sbert_embedding(a6) e7 = get_sbert_embedding(a7) e8 = get_sbert_embedding(a8) e8x = get_sbert_embedding(a8x) e9 = get_sbert_embedding(a9) e10 = get_sbert_embedding(a10) e11 = get_sbert_embedding(a11) e12 = get_sbert_embedding(a12) e13 = get_sbert_embedding(a13) e14 = get_sbert_embedding(a14) e15 = get_sbert_embedding(a15) print(f"a1 \"{a1}\" to \"{a2}\" a2 - expected Different") print(cosine_similarity([e1], [e2])) print(f"a1 \"{a1}\" to \"{a4}\" a4 - expected Different") print(cosine_similarity([e1], [e4])) print(f"a1 \"{a1}\" to \"{a5}\" a5 - expected Same") print(cosine_similarity([e1], [e5])) print(f"a7 \"{a7}\" to \"{a8}\" a8 - expected Different") print(cosine_similarity([e7], [e8])) print(f"a7 \"{a7}\" to \"{a8x}\" a8x - expected Different") print(cosine_similarity([e7], [e8x])) print(f"a7 \"{a7}\" to \"{a9}\" a9 - expected Same") print(cosine_similarity([e7], [e9])) print(f"a7 \"{a7}\" to \"{a10}\" a10 - expected Same") print(cosine_similarity([e7], [e10])) print(f"a11 \"{a11}\" to \"{a12}\" a12 - expected Same") print(cosine_similarity([e11], [e12])) print(f"a11 \"{a11}\" to \"{a13}\" a13 - expected Different") print(cosine_similarity([e11], [e13])) print(f"a14 \"{a14}\" to \"{a15}\" a15 - expected Same") print(cosine_similarity([e14], [e15])) # with base #a1 to a2 #[[0.99512167]] #a1 to a4 #[[0.94850088]] #a1 to a5 #[[0.99636901]] # with large #a1 to a2 #[[0.99682108]] #a1 to a4 #[[0.94006972]] #a1 to a5 #[[0.99503919]]