Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.applications import EfficientNetV2B0 | |
from keras.layers import Flatten,Dense,Dropout,GlobalAveragePooling2D | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.image import load_img | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from keras.models import Model | |
from tensorflow.keras.optimizers import Adam | |
import numpy as np | |
from huggingface_hub import hf_hub_url, cached_download | |
img_shape = (224,224,3) | |
model = EfficientNetV2B0(include_top = False,input_shape=img_shape) | |
flat_1=GlobalAveragePooling2D()(model.output) | |
capa_3 = Dense(1,activation='sigmoid')(flat_1) | |
model = Model(inputs=model.inputs,outputs = capa_3) | |
model.compile(optimizer=Adam(learning_rate=1e-4),loss="BinaryCrossentropy", metrics=["accuracy"]) | |
#Subir los pesos del modelo | |
repo_id = "ferferefer/ACRIMA" | |
filename = "ACRIMA.h5" # o el path a tu SavedModel | |
# Obtener la URL y descargar el archivo (temporalmente) | |
model_file = cached_download(hf_hub_url(repo_id, filename)) | |
# Cargar el modelo | |
model.load_weights(model_file) | |
st.title('ACRIMA Glaucoma Image Classifier') | |
input_image = st.file_uploader('Upload image') | |
if st.button('PREDICT'): | |
predict = load_img(input_image, target_size=img_shape) | |
predict_modified = img_to_array(predict) | |
predict_modified = np.expand_dims(predict_modified, axis=0) | |
result = model.predict(predict_modified) | |
if result < 0.5: | |
probability = 1 - result[0][0] | |
st.write(f"Healthy with {probability}%") | |
else: | |
probability = result[0][0] | |
st.write(f"Glaucoma with {probability}%") | |
image1 = load_img(input_image) | |
image1 = img_to_array(image1) | |
image1 = np.array(image1) | |
image1 = image1/255 | |
st.image(image1, caption='Uploaded Image', use_column_width=True, clamp=True) | |