Spaces:
Sleeping
Sleeping
ferferefer
commited on
Commit
•
6a88d6c
1
Parent(s):
4708345
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import SegformerForSemanticSegmentation
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
from transformers import AutoImageProcessor
|
9 |
+
from huggingface_hub import hf_hub_url, cached_download
|
10 |
+
from tensorflow.keras.applications import EfficientNetV2B0
|
11 |
+
from keras.layers import GlobalAveragePooling2D, Dense
|
12 |
+
from keras.models import Model
|
13 |
+
from tensorflow.keras.optimizers import Adam
|
14 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
15 |
+
|
16 |
+
# Load SegFormer model
|
17 |
+
model_id_seg = "nvidia/mit-b0"
|
18 |
+
image_processor = AutoImageProcessor.from_pretrained(model_id_seg, size=(128, 128))
|
19 |
+
#id2label = {0: "na", 1:"anillo", 2:"nervio"}
|
20 |
+
#label2id = { v:k for k, v in id2label.items()}
|
21 |
+
#model_seg = AutoModelForSemanticSegmentation.from_pretrained(model_id_seg, id2label=id2label, label2id=label2id)
|
22 |
+
|
23 |
+
# Load SegFormer model with trained weights
|
24 |
+
repo_id_seg = "ferferefer/segformer"
|
25 |
+
#filename_seg = "model.ckpt"
|
26 |
+
#model_file_seg = cached_download(hf_hub_url(repo_id_seg, filename_seg))
|
27 |
+
|
28 |
+
model_seg = SegformerForSemanticSegmentation.from_pretrained(repo_id_seg)
|
29 |
+
|
30 |
+
# Function to preprocess and obtain predictions from SegFormer model
|
31 |
+
def obtener_predicciones(model, sample_batch):
|
32 |
+
processed_batch = image_processor(sample_batch, return_tensors="pt")
|
33 |
+
pixel_values = processed_batch.pixel_values
|
34 |
+
outputs = model(pixel_values=pixel_values)
|
35 |
+
logits = outputs.logits
|
36 |
+
|
37 |
+
upsampled_logits = nn.functional.interpolate(
|
38 |
+
logits,
|
39 |
+
size=sample_batch[0].size[::-1],
|
40 |
+
mode="bilinear",
|
41 |
+
align_corners=False,
|
42 |
+
)
|
43 |
+
pred_seg = upsampled_logits.argmax(dim=1)
|
44 |
+
return pred_seg
|
45 |
+
|
46 |
+
# Function to calculate centroids of the segmented image
|
47 |
+
def calcular_centro_imagen(masks):
|
48 |
+
centroid_list = []
|
49 |
+
imagenes_transformadas = []
|
50 |
+
|
51 |
+
for mask in masks:
|
52 |
+
|
53 |
+
image = np.transpose(np.argwhere(mask.cpu()==1))
|
54 |
+
|
55 |
+
|
56 |
+
x = [p[0] for p in image]
|
57 |
+
y = [p[1] for p in image]
|
58 |
+
centroid = (sum(x) / len(image), sum(y) / len(image))
|
59 |
+
centroid_list.append(centroid)
|
60 |
+
imagenes_transformadas.append(image)
|
61 |
+
|
62 |
+
return centroid_list,imagenes_transformadas
|
63 |
+
|
64 |
+
# Function to crop the segmented image based on centroids
|
65 |
+
def recortar_imagen(centroids, mascara_final,images):
|
66 |
+
lista_img_recortadas = []
|
67 |
+
|
68 |
+
for counter, image in enumerate (images):
|
69 |
+
max_distance = 0
|
70 |
+
|
71 |
+
for x, y in mascara_final[counter]:
|
72 |
+
|
73 |
+
distance = np.sqrt((x - centroids[counter][0]) ** 2 + (y - centroids[counter][1]) ** 2)
|
74 |
+
|
75 |
+
if distance > max_distance:
|
76 |
+
|
77 |
+
max_distance = distance
|
78 |
+
|
79 |
+
centroid_uno = int(centroids[counter][1].item())
|
80 |
+
|
81 |
+
centroid_cero = int(centroids[counter][0].item())
|
82 |
+
|
83 |
+
max_distance = int(max_distance.item())
|
84 |
+
|
85 |
+
image = image.cpu().numpy()
|
86 |
+
|
87 |
+
#image = np.transpose(image, (1, 2, 0))
|
88 |
+
|
89 |
+
|
90 |
+
#image = np.clip(image, 0, 1, dtype=np.float32)
|
91 |
+
|
92 |
+
a = centroid_cero - int(max_distance * 2)
|
93 |
+
|
94 |
+
b = centroid_cero + int(max_distance * 2)
|
95 |
+
|
96 |
+
c = centroid_uno - int(max_distance * 2)
|
97 |
+
|
98 |
+
d = centroid_uno + int(max_distance * 2)
|
99 |
+
|
100 |
+
height, width, _ = image.shape
|
101 |
+
pad_size = max_distance * 2
|
102 |
+
|
103 |
+
if a < 0:
|
104 |
+
crop_img = image[
|
105 |
+
0:centroid_cero + int(max_distance * 2),
|
106 |
+
centroid_uno - int(max_distance * 2):centroid_uno + int(max_distance * 2)]
|
107 |
+
|
108 |
+
pad_top = max(0, pad_size - centroid_cero)
|
109 |
+
pad_bottom = max(0, pad_size + centroid_cero - height)
|
110 |
+
pad_left = max(0, pad_size - centroid_uno)
|
111 |
+
pad_right = max(0, pad_size + centroid_uno - width)
|
112 |
+
|
113 |
+
padded_img = np.pad(crop_img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode='constant', constant_values=0)
|
114 |
+
padded_img = torch.from_numpy(padded_img)
|
115 |
+
lista_img_recortadas.append(padded_img)
|
116 |
+
elif b > height:
|
117 |
+
crop_img = image[
|
118 |
+
centroid_cero - int(max_distance*2):height,
|
119 |
+
centroid_uno - int(max_distance * 2):centroid_uno + int(max_distance * 2)]
|
120 |
+
|
121 |
+
pad_top = max(0, pad_size - centroid_cero)
|
122 |
+
pad_bottom = max(0, pad_size + centroid_cero - height)
|
123 |
+
pad_left = max(0, pad_size - centroid_uno)
|
124 |
+
pad_right = max(0, pad_size + centroid_uno - width)
|
125 |
+
|
126 |
+
padded_img = np.pad(crop_img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode='constant', constant_values=0)
|
127 |
+
padded_img = torch.from_numpy(padded_img)
|
128 |
+
lista_img_recortadas.append(padded_img)
|
129 |
+
elif c < 0:
|
130 |
+
crop_img = image[
|
131 |
+
centroid_cero-int(max_distance * 2):centroid_cero + int(max_distance * 2),
|
132 |
+
0:centroid_uno + int(max_distance * 2)]
|
133 |
+
|
134 |
+
pad_top = max(0, pad_size - centroid_cero)
|
135 |
+
pad_bottom = max(0, pad_size + centroid_cero - height)
|
136 |
+
pad_left = max(0, pad_size - centroid_uno)
|
137 |
+
pad_right = max(0, pad_size + centroid_uno - width)
|
138 |
+
|
139 |
+
padded_img = np.pad(crop_img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode='constant', constant_values=0)
|
140 |
+
padded_img = torch.from_numpy(padded_img)
|
141 |
+
|
142 |
+
lista_img_recortadas.append(padded_img)
|
143 |
+
elif d > width:
|
144 |
+
crop_img = image[
|
145 |
+
centroid_cero - int(max_distance *2):centroid_cero + int(max_distance * 2),
|
146 |
+
centroid_uno - int(max_distance * 2):width]
|
147 |
+
|
148 |
+
pad_top = max(0, pad_size - centroid_cero)
|
149 |
+
pad_bottom = max(0, pad_size + centroid_cero - height)
|
150 |
+
pad_left = max(0, pad_size - centroid_uno)
|
151 |
+
pad_right = max(0, pad_size + centroid_uno - width)
|
152 |
+
|
153 |
+
padded_img = np.pad(crop_img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), mode='constant', constant_values=0)
|
154 |
+
padded_img = torch.from_numpy(padded_img)
|
155 |
+
lista_img_recortadas.append(padded_img)
|
156 |
+
|
157 |
+
else:
|
158 |
+
crop_img = image[
|
159 |
+
centroid_cero - int(max_distance * 2):centroid_cero + int(max_distance * 2),
|
160 |
+
centroid_uno - int(max_distance * 2):centroid_uno + int(max_distance * 2)
|
161 |
+
]
|
162 |
+
|
163 |
+
crop_img = torch.from_numpy(crop_img)
|
164 |
+
|
165 |
+
|
166 |
+
lista_img_recortadas.append(crop_img)
|
167 |
+
|
168 |
+
return lista_img_recortadas
|
169 |
+
|
170 |
+
# Load EfficientNetV2 model
|
171 |
+
img_shape = (224, 224, 3)
|
172 |
+
model_efficientnet = EfficientNetV2B0(include_top=False, input_shape=img_shape)
|
173 |
+
flat_1 = GlobalAveragePooling2D()(model_efficientnet.output)
|
174 |
+
capa_3 = Dense(1, activation='sigmoid')(flat_1)
|
175 |
+
model_efficientnet = Model(inputs=model_efficientnet.inputs, outputs=capa_3)
|
176 |
+
model_efficientnet.compile(optimizer=Adam(learning_rate=1e-4), loss="BinaryCrossentropy", metrics=["accuracy"])
|
177 |
+
|
178 |
+
# Load weights for EfficientNetV2 model
|
179 |
+
repo_id = "ferferefer/PAPILA"
|
180 |
+
filename = "EfficientNetV2B0_checkpoint.h5"
|
181 |
+
model_file = cached_download(hf_hub_url(repo_id, filename))
|
182 |
+
model_efficientnet.load_weights(model_file)
|
183 |
+
|
184 |
+
# Streamlit app
|
185 |
+
st.title('Glaucoma PAPILA Image Classifier')
|
186 |
+
|
187 |
+
|
188 |
+
# Main Streamlit app logic
|
189 |
+
uploaded_image = st.file_uploader('Upload image', type=['jpg', 'jpeg', 'png'])
|
190 |
+
|
191 |
+
if uploaded_image is not None:
|
192 |
+
|
193 |
+
|
194 |
+
# Obtain predictions from SegFormer model
|
195 |
+
predictions_papila = obtener_predicciones(model_seg, uploaded_image)
|
196 |
+
|
197 |
+
centroids,imagenes_transformadas = calcular_centro_imagen(predictions_papila)
|
198 |
+
imagen_final_recortada = recortar_imagen(centroids, imagenes_transformadas,uploaded_image)
|
199 |
+
imagen_final_recortada= Image.fromarray(imagen_final_recortada[0].numpy())
|
200 |
+
|
201 |
+
# Display cropped image
|
202 |
+
st.image(imagen_final_recortada[0], use_column_width=True)
|
203 |
+
|
204 |
+
# Button to trigger prediction
|
205 |
+
if st.button('PREDICT'):
|
206 |
+
predict = load_img(imagen_final_recortada[0], target_size=img_shape)
|
207 |
+
predict_modified = img_to_array(predict)
|
208 |
+
predict_modified = np.expand_dims(predict_modified, axis=0)
|
209 |
+
result = model_efficientnet.predict(predict_modified)
|
210 |
+
if result < 0.5:
|
211 |
+
probability = 1 - result[0][0]
|
212 |
+
st.write(f"Healthy with {probability*100:.2f}%")
|
213 |
+
else:
|
214 |
+
probability = result[0][0]
|
215 |
+
st.write(f"Glaucoma with {probability*100:.2f}%")
|
216 |
+
|
217 |
+
image1 = img_to_array(imagen_final_recortada[0])
|
218 |
+
image1 = np.array(imagen_final_recortada[0])
|
219 |
+
image1 = imagen_final_recortada[0]/255
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
st.image(imagen_final_recortada[0], caption='Uploaded Image', use_column_width=True, clamp=True)
|
224 |
+
|