import streamlit as st import chromadb from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_community.document_loaders import PyPDFLoader from langchain_text_splitters import RecursiveCharacterTextSplitter @st.cache_resource() def load_embedding_model(model): """ sentence-transformers/all-mpnet-base-v2 sentence-transformers/all-MiniLM-L6-v2 """ model = HuggingFaceEmbeddings(model_name=model) return model def load_vector_store(): """ Loads a simple vector store I didn't use @st.cache because I want to load vector store on every page load """ model = load_embedding_model("sentence-transformers/all-MiniLM-L6-v2") chromadb.api.client.SharedSystemClient.clear_system_cache() vector_store = Chroma( collection_name="main_store", embedding_function=model, ) return vector_store def process_pdf(pdf, vector_store): """ Loads a pdf and splits it into chunks """ loader = PyPDFLoader(pdf) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vector_store.add_documents(splits)