import os import shutil import streamlit as st from llm import load_llm, response_generator from vector_store import load_vector_store, process_pdf from uuid import uuid4 repo_id = "Qwen/Qwen2.5-1.5B-Instruct-GGUF" filename = "qwen2.5-1.5b-instruct-q8_0.gguf" llm = load_llm(repo_id, filename) vector_store = load_vector_store() st.title("Medical Triage System") st.subheader("Upload Referral Letters for Triage") st.write( "This AI-powered system analyzes referral letters to classify them as **Urgent** or **Routine** " "and suggests either a **Face-to-Face** or **Virtual Appointment**." ) # Initialize state if "messages" not in st.session_state: vector_store.reset_collection() if os.path.exists("./temp"): shutil.rmtree("./temp") st.session_state.messages = [] # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # Accept PDF uploads with st.sidebar: st.title("Upload Referral Letters") uploaded_files = st.file_uploader( "Choose PDF files", accept_multiple_files=True, type="pdf" ) if uploaded_files is not None: for uploaded_file in uploaded_files: temp_dir = "./temp" if not os.path.exists(temp_dir): os.makedirs(temp_dir) temp_file = f"./temp/{uploaded_file.name}-{uuid4()}.pdf" with open(temp_file, "wb") as file: file.write(uploaded_file.getvalue()) st.write(f"Processing {uploaded_file.name}...") process_pdf(temp_file, vector_store) st.success(f"Processed {uploaded_file.name} successfully. ✅") # Process user query if prompt := st.text_input("Enter triage-related query (e.g., 'Is this urgent?')"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): retriever = vector_store.as_retriever(search_kwargs={"k": 3}) response = response_generator(llm, st.session_state.messages, prompt, retriever) st.markdown(response["answer"]) with st.expander("See Context"): st.write(response["context"]) st.session_state.messages.append({"role": "assistant", "content": response["answer"]})