Spaces:
Sleeping
Sleeping
ferferefer
commited on
Commit
·
cc6e84a
1
Parent(s):
4666cef
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from tf.keras.applications import EfficientNetV2B0
|
4 |
+
from keras.layers import Flatten,Dense,Dropout,GlobalAveragePooling2D
|
5 |
+
from tf.keras.models import load_model
|
6 |
+
from tf.keras.preprocessing.image import load_img
|
7 |
+
from tf.keras.preprocessing.image import img_to_array
|
8 |
+
from keras.models import Model
|
9 |
+
from transformers import pipeline
|
10 |
+
import numpy as np
|
11 |
+
from huggingface_hub import hf_hub_url, cached_download
|
12 |
+
|
13 |
+
img_shape = (224,224,3)
|
14 |
+
model = EfficientNetV2B0(include_top = False,input_shape=img_shape)
|
15 |
+
flat_1=GlobalAveragePooling2D()(model.output)
|
16 |
+
capa_3 = Dense(1,activation='sigmoid')(flat_1)
|
17 |
+
model = Model(inputs=model.inputs,outputs = capa_3)
|
18 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),loss="BinaryCrossentropy", metrics=["accuracy"])
|
19 |
+
#Subir los pesos del modelo
|
20 |
+
repo_id = "ferferefer/RIM_ONE_Glaucoma"
|
21 |
+
filename = "vgg_rim_checkpoint.h5" # o el path a tu SavedModel
|
22 |
+
# Obtener la URL y descargar el archivo (temporalmente)
|
23 |
+
model_file = cached_download(hf_hub_url(repo_id, filename))
|
24 |
+
# Cargar el modelo
|
25 |
+
model.load_weights(model_file)
|
26 |
+
|
27 |
+
|
28 |
+
st.title('RIM_ONE Glaucoma Image Classifier')
|
29 |
+
input_image = st.file_uploader('Upload image')
|
30 |
+
|
31 |
+
if st.button('PREDICT'):
|
32 |
+
|
33 |
+
predict = load_img(input_image, target_size=img_shape)
|
34 |
+
predict_modified = img_to_array(predict)
|
35 |
+
predict_modified = np.expand_dims(predict_modified, axis=0)
|
36 |
+
result = model.predict(predict_modified)
|
37 |
+
if result < 0.5:
|
38 |
+
probability = 1 - result[0][0]
|
39 |
+
print(f"Healthy with {probability}%")
|
40 |
+
|
41 |
+
else:
|
42 |
+
probability = result[0][0]
|
43 |
+
print(f"Glaucoma with {probability}%")
|
44 |
+
|
45 |
+
image1 = load_img(input_image)
|
46 |
+
image1 = img_to_array(image1)
|
47 |
+
image1 = np.array(image1)
|
48 |
+
|
49 |
+
|
50 |
+
st.image(image1, width=500)
|
51 |
+
|