ferferefer commited on
Commit
cc6e84a
·
1 Parent(s): 4666cef

Add application file

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ from tf.keras.applications import EfficientNetV2B0
4
+ from keras.layers import Flatten,Dense,Dropout,GlobalAveragePooling2D
5
+ from tf.keras.models import load_model
6
+ from tf.keras.preprocessing.image import load_img
7
+ from tf.keras.preprocessing.image import img_to_array
8
+ from keras.models import Model
9
+ from transformers import pipeline
10
+ import numpy as np
11
+ from huggingface_hub import hf_hub_url, cached_download
12
+
13
+ img_shape = (224,224,3)
14
+ model = EfficientNetV2B0(include_top = False,input_shape=img_shape)
15
+ flat_1=GlobalAveragePooling2D()(model.output)
16
+ capa_3 = Dense(1,activation='sigmoid')(flat_1)
17
+ model = Model(inputs=model.inputs,outputs = capa_3)
18
+ model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),loss="BinaryCrossentropy", metrics=["accuracy"])
19
+ #Subir los pesos del modelo
20
+ repo_id = "ferferefer/RIM_ONE_Glaucoma"
21
+ filename = "vgg_rim_checkpoint.h5" # o el path a tu SavedModel
22
+ # Obtener la URL y descargar el archivo (temporalmente)
23
+ model_file = cached_download(hf_hub_url(repo_id, filename))
24
+ # Cargar el modelo
25
+ model.load_weights(model_file)
26
+
27
+
28
+ st.title('RIM_ONE Glaucoma Image Classifier')
29
+ input_image = st.file_uploader('Upload image')
30
+
31
+ if st.button('PREDICT'):
32
+
33
+ predict = load_img(input_image, target_size=img_shape)
34
+ predict_modified = img_to_array(predict)
35
+ predict_modified = np.expand_dims(predict_modified, axis=0)
36
+ result = model.predict(predict_modified)
37
+ if result < 0.5:
38
+ probability = 1 - result[0][0]
39
+ print(f"Healthy with {probability}%")
40
+
41
+ else:
42
+ probability = result[0][0]
43
+ print(f"Glaucoma with {probability}%")
44
+
45
+ image1 = load_img(input_image)
46
+ image1 = img_to_array(image1)
47
+ image1 = np.array(image1)
48
+
49
+
50
+ st.image(image1, width=500)
51
+