Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from langchain_community.vectorstores import Chroma | |
from langchain_huggingface import HuggingFaceEmbeddings | |
import os | |
import torch | |
# Load the embedding model | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
# Load the pre-existing vector database | |
persist_directory = "db" | |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
# Determine device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the Marco-o1 model | |
pipe = pipeline( | |
"text-generation", | |
model="AIDC-AI/Marco-o1", | |
device=device, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
trust_remote_code=True, | |
) | |
def get_relevant_context(query, k=3): | |
# Search the vector database for relevant documents | |
docs = vectordb.similarity_search(query, k=k) | |
# Combine the relevant documents into a single context string | |
context = "\n".join([doc.page_content for doc in docs]) | |
return context | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
try: | |
# Get relevant context from the vector database | |
context = get_relevant_context(message) | |
# Prepare the messages for the model | |
messages = [ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": f"Context:\n{context}" if context else ""}, | |
] | |
for user_msg, bot_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if bot_msg: | |
messages.append({"role": "assistant", "content": bot_msg}) | |
messages.append({"role": "user", "content": message}) | |
# Format the messages for the model | |
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) | |
response = pipe( | |
input_text, | |
max_length=max_tokens + len(input_text), | |
temperature=temperature, | |
top_p=top_p, | |
num_return_sequences=1 | |
)[0]['generated_text'] | |
# Extract new response | |
new_response = response.split("assistant: ")[-1].strip() | |
yield new_response | |
except Exception as e: | |
yield f"An error occurred: {e}" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a helpful AI assistant. Use the provided context to answer questions accurately.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title="Marco-O1 Assistant with Knowledge Base", | |
description="Ask questions about the documents in the knowledge base. The assistant will use the relevant context to provide accurate answers." | |
) | |
if __name__ == "__main__": | |
demo.launch() |