|
import cv2 |
|
import torch |
|
|
|
import numpy as np |
|
|
|
from torch import nn |
|
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation |
|
|
|
from cam import ClassActivationMap |
|
from utils import add_mask, simple_vcdr |
|
|
|
|
|
class GlaucomaModel(object): |
|
def __init__(self, |
|
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", |
|
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation', |
|
device=torch.device('cpu')): |
|
|
|
self.device = device |
|
|
|
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) |
|
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() |
|
|
|
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path) |
|
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval() |
|
|
|
self.cam = ClassActivationMap(self.cls_model, self.cls_extractor) |
|
|
|
|
|
self.cls_id2label = self.cls_model.config.id2label |
|
|
|
self.seg_id2label = self.seg_model.config.id2label |
|
|
|
|
|
self.num_diseases = len(self.cls_id2label) |
|
|
|
self.seg_classes = len(self.seg_id2label) |
|
|
|
def glaucoma_pred(self, image): |
|
""" |
|
Args: |
|
image: image array in RGB order. |
|
""" |
|
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") |
|
with torch.no_grad(): |
|
inputs.to(self.device) |
|
outputs = self.cls_model(**inputs).logits |
|
disease_idx = outputs.cpu()[0, :].detach().numpy().argmax() |
|
|
|
return disease_idx |
|
|
|
def optic_disc_cup_pred(self, image): |
|
""" |
|
Args: |
|
image: image array in RGB order. |
|
""" |
|
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
inputs.to(self.device) |
|
outputs = self.seg_model(**inputs) |
|
logits = outputs.logits.cpu() |
|
|
|
upsampled_logits = nn.functional.interpolate( |
|
logits, |
|
size=image.shape[:2], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
pred_disc_cup = upsampled_logits.argmax(dim=1)[0] |
|
|
|
return pred_disc_cup.numpy().astype(np.uint8) |
|
|
|
def process(self, image): |
|
""" |
|
Args: |
|
image: image array in RGB order. |
|
""" |
|
image_shape = image.shape[:2] |
|
disease_idx = self.glaucoma_pred(image) |
|
cam = self.cam.get_cam(image, disease_idx) |
|
cam = cv2.resize(cam, image_shape[::-1]) |
|
disc_cup = self.optic_disc_cup_pred(image) |
|
try: |
|
vcdr = simple_vcdr(disc_cup) |
|
except: |
|
vcdr = np.nan |
|
_, disc_cup_image = add_mask(image, disc_cup, [0, 1, 2], [[0, 0, 0], [0, 255, 0], [255, 0, 0]], 0.2) |
|
|
|
return disease_idx, disc_cup_image, cam, vcdr |
|
|
|
|