|
import cv2 |
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation |
|
import matplotlib.pyplot as plt |
|
import streamlit as st |
|
from PIL import Image |
|
import io |
|
|
|
|
|
class GlaucomaModel(object): |
|
def __init__(self, |
|
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", |
|
seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation', |
|
device=torch.device('cpu')): |
|
self.device = device |
|
|
|
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) |
|
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() |
|
|
|
self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path) |
|
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval() |
|
|
|
|
|
self.cls_id2label = self.cls_model.config.id2label |
|
self.seg_id2label = self.seg_model.config.id2label |
|
|
|
def glaucoma_pred(self, image): |
|
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") |
|
with torch.no_grad(): |
|
inputs.to(self.device) |
|
outputs = self.cls_model(**inputs).logits |
|
|
|
probs = F.softmax(outputs, dim=-1) |
|
disease_idx = probs.cpu()[0, :].numpy().argmax() |
|
confidence = probs.cpu()[0, disease_idx].item() * 100 |
|
return disease_idx, confidence |
|
|
|
def optic_disc_cup_pred(self, image): |
|
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt") |
|
with torch.no_grad(): |
|
inputs.to(self.device) |
|
outputs = self.seg_model(**inputs) |
|
logits = outputs.logits.cpu() |
|
upsampled_logits = nn.functional.interpolate( |
|
logits, size=image.shape[:2], mode="bilinear", align_corners=False |
|
) |
|
|
|
seg_probs = F.softmax(upsampled_logits, dim=1) |
|
pred_disc_cup = upsampled_logits.argmax(dim=1)[0] |
|
cup_confidence = seg_probs[0, 2, :, :].mean().item() * 100 |
|
disc_confidence = seg_probs[0, 1, :, :].mean().item() * 100 |
|
return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence |
|
|
|
def process(self, image): |
|
image_shape = image.shape[:2] |
|
disease_idx, cls_confidence = self.glaucoma_pred(image) |
|
disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image) |
|
|
|
try: |
|
vcdr = simple_vcdr(disc_cup) |
|
except: |
|
vcdr = np.nan |
|
|
|
|
|
mask = (disc_cup > 0).astype(np.uint8) |
|
|
|
|
|
x, y, w, h = cv2.boundingRect(mask) |
|
padding = max(50, int(0.2 * max(w, h))) |
|
x = max(x - padding, 0) |
|
y = max(y - padding, 0) |
|
w = min(w + 2 * padding, image.shape[1] - x) |
|
h = min(h + 2 * padding, image.shape[0] - y) |
|
|
|
|
|
cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy() |
|
|
|
|
|
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2) |
|
|
|
return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image |
|
|
|
|
|
def simple_vcdr(mask): |
|
""" |
|
Simple function to calculate the vertical cup-to-disc ratio (VCDR). |
|
Assumes: |
|
- mask contains class 1 for optic disc and class 2 for optic cup. |
|
""" |
|
disc_area = np.sum(mask == 1) |
|
cup_area = np.sum(mask == 2) |
|
if disc_area == 0: |
|
return np.nan |
|
vcdr = cup_area / disc_area |
|
return vcdr |
|
|
|
def add_mask(image, mask, classes, colors, alpha=0.5): |
|
""" |
|
Adds a transparent mask to the original image. |
|
Args: |
|
- image: the original RGB image |
|
- mask: the predicted segmentation mask |
|
- classes: a list of class indices to apply masks for (e.g., [1, 2]) |
|
- colors: a list of colors for each class (e.g., [[0, 255, 0], [255, 0, 0]] for green and red) |
|
- alpha: transparency level (default = 0.5) |
|
""" |
|
overlay = image.copy() |
|
for class_id, color in zip(classes, colors): |
|
overlay[mask == class_id] = color |
|
output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0) |
|
return output, overlay |
|
|
|
|
|
def main(): |
|
st.set_page_config(layout="wide") |
|
st.title("Glaucoma Screening from Retinal Fundus Images") |
|
st.write('Developed by X. Sun. Find more info about me: https://pamixsun.github.io') |
|
|
|
|
|
cols = st.beta_columns((1, 1, 1, 1)) |
|
cols[0].subheader("Input image") |
|
cols[1].subheader("Optic disc and optic cup") |
|
cols[2].subheader("Class activation map") |
|
cols[3].subheader("Cropped Image") |
|
|
|
|
|
st.sidebar.title("Image selection") |
|
st.set_option('deprecation.showfileUploaderEncoding', False) |
|
uploaded_file = st.sidebar.file_uploader("Upload image", type=['png', 'jpeg', 'jpg']) |
|
|
|
if uploaded_file is not None: |
|
|
|
image = Image.open(uploaded_file).convert('RGB') |
|
image = np.array(image).astype(np.uint8) |
|
fig, ax = plt.subplots() |
|
ax.imshow(image) |
|
ax.axis('off') |
|
cols[0].pyplot(fig) |
|
|
|
if st.sidebar.button("Analyze image"): |
|
if uploaded_file is None: |
|
st.sidebar.write("Please upload an image") |
|
else: |
|
with st.spinner('Loading model...'): |
|
run_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model = GlaucomaModel(device=run_device) |
|
|
|
with st.spinner('Analyzing...'): |
|
disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image = model.process(image) |
|
|
|
|
|
ax.imshow(disc_cup_image) |
|
ax.axis('off') |
|
cols[1].pyplot(fig) |
|
|
|
|
|
ax.imshow(image) |
|
ax.axis('off') |
|
cols[2].pyplot(fig) |
|
|
|
|
|
ax.imshow(cropped_image) |
|
ax.axis('off') |
|
cols[3].pyplot(fig) |
|
|
|
|
|
buf = io.BytesIO() |
|
Image.fromarray(cropped_image).save(buf, format="PNG") |
|
st.sidebar.download_button( |
|
label="Download Cropped Image", |
|
data=buf.getvalue(), |
|
file_name="cropped_image.png", |
|
mime="image/png" |
|
) |
|
|
|
|
|
st.subheader("Screening results:") |
|
final_results_as_table = f""" |
|
|Parameters|Outcomes| |
|
|---|---| |
|
|Vertical cup-to-disc ratio|{vcdr:.04f}| |
|
|Category|{model.cls_id2label[disease_idx]} ({cls_confidence:.02f}% confidence)| |
|
|Optic Cup Segmentation Confidence|{cup_confidence:.02f}%| |
|
|Optic Disc Segmentation Confidence|{disc_confidence:.02f}%| |
|
""" |
|
st.markdown(final_results_as_table) |
|
|
|
if __name__ == '__main__': |
|
|