luigi12345 commited on
Commit
131b493
Β·
1 Parent(s): f752fee
Files changed (1) hide show
  1. app.py +117 -42
app.py CHANGED
@@ -4,12 +4,10 @@ import numpy as np
4
  import torch.nn.functional as F
5
  from torch import nn
6
  from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
7
- import matplotlib.pyplot as plt
8
  import streamlit as st
9
  from PIL import Image
10
  import io
11
  import zipfile
12
- import os
13
 
14
  # --- GlaucomaModel Class ---
15
  class GlaucomaModel(object):
@@ -48,8 +46,16 @@ class GlaucomaModel(object):
48
  )
49
  seg_probs = F.softmax(upsampled_logits, dim=1)
50
  pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
51
- cup_confidence = seg_probs[0, 2, :, :].mean().item() * 100
52
- disc_confidence = seg_probs[0, 1, :, :].mean().item() * 100
 
 
 
 
 
 
 
 
53
  return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
54
 
55
  def process(self, image):
@@ -90,64 +96,133 @@ def add_mask(image, mask, classes, colors, alpha=0.5):
90
  output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
91
  return output, overlay
92
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  # --- Streamlit Interface ---
94
  def main():
95
- st.set_page_config(layout="wide")
96
- st.title("Batch Glaucoma Screening from Retinal Fundus Images")
97
 
98
- # Explanation for the confidence threshold
99
- st.sidebar.write("**Confidence Threshold** (optional): Set a threshold to filter images based on the model's confidence in glaucoma classification.")
100
- confidence_threshold = st.sidebar.slider("Confidence Threshold (%)", 0, 100, 70)
101
- uploaded_files = st.sidebar.file_uploader("Upload Images", type=['png', 'jpeg', 'jpg'], accept_multiple_files=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
- confident_images = []
104
- download_confident_images = []
105
-
106
  if uploaded_files:
107
  for uploaded_file in uploaded_files:
108
  image = Image.open(uploaded_file).convert('RGB')
109
  image_np = np.array(image).astype(np.uint8)
110
 
111
- with st.spinner(f'Processing {uploaded_file.name}...'):
112
  model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
113
  disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
114
 
115
- # Confidence-based grouping
116
- is_confident = cls_conf >= confidence_threshold
117
- if is_confident:
118
- confident_images.append(uploaded_file.name)
119
- download_confident_images.append((cropped_image, uploaded_file.name))
120
-
121
- # Display Results
122
- st.subheader(f"Results for {uploaded_file.name}")
123
- cols = st.beta_columns(4) # Use st.beta_columns for compatibility with older Streamlit
124
- cols[0].image(image_np, caption="Input Image", use_column_width=True)
125
- cols[1].image(disc_cup_image, caption="Disc/Cup Segmentation", use_column_width=True)
126
- cols[2].image(image_np, caption="Class Activation Map", use_column_width=True)
127
- cols[3].image(cropped_image, caption="Cropped Image", use_column_width=True)
128
-
129
- # Display confidence and metrics
130
- st.write(f"**Vertical cup-to-disc ratio:** {vcdr:.04f}")
131
- st.write(f"**Category:** {model.cls_id2label[disease_idx]} ({cls_conf:.02f}% confidence)")
132
- st.write(f"**Optic Cup Segmentation Confidence:** {cup_conf:.02f}%")
133
- st.write(f"**Optic Disc Segmentation Confidence:** {disc_conf:.02f}%")
134
- st.write(f"**Confidence Group:** {'Confident' if is_confident else 'Not Confident'}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- # Download Link for Confident Images
137
  if download_confident_images:
 
 
138
  with zipfile.ZipFile("confident_cropped_images.zip", "w") as zf:
139
  for cropped_image, name in download_confident_images:
140
  img_buffer = io.BytesIO()
141
  Image.fromarray(cropped_image).save(img_buffer, format="PNG")
142
  zf.writestr(f"{name}_cropped.png", img_buffer.getvalue())
143
-
144
- # Provide a markdown link to the ZIP file
145
- st.sidebar.markdown(
146
- f"[Download Confident Cropped Images](./confident_cropped_images.zip)",
147
- unsafe_allow_html=True
 
 
148
  )
149
  else:
150
- st.sidebar.info("Upload images to begin analysis.")
 
 
 
 
 
 
151
 
152
  if __name__ == '__main__':
153
- main()
 
4
  import torch.nn.functional as F
5
  from torch import nn
6
  from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
 
7
  import streamlit as st
8
  from PIL import Image
9
  import io
10
  import zipfile
 
11
 
12
  # --- GlaucomaModel Class ---
13
  class GlaucomaModel(object):
 
46
  )
47
  seg_probs = F.softmax(upsampled_logits, dim=1)
48
  pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
49
+
50
+ # Calculate segmentation confidence based on probability distribution
51
+ # For each pixel classified as cup/disc, check how confident the model is
52
+ cup_mask = pred_disc_cup == 2
53
+ disc_mask = pred_disc_cup == 1
54
+
55
+ # Get confidence only for pixels predicted as cup/disc
56
+ cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
57
+ disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
58
+
59
  return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
60
 
61
  def process(self, image):
 
96
  output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
97
  return output, overlay
98
 
99
+ def get_confidence_level(confidence):
100
+ if confidence >= 90:
101
+ return "Very High"
102
+ elif confidence >= 75:
103
+ return "High"
104
+ elif confidence >= 60:
105
+ return "Moderate"
106
+ elif confidence >= 45:
107
+ return "Low"
108
+ else:
109
+ return "Very Low"
110
+
111
  # --- Streamlit Interface ---
112
  def main():
113
+ st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
 
114
 
115
+ # Header with better styling
116
+ st.markdown("""
117
+ <h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
118
+ <p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
119
+ """, unsafe_allow_html=True)
120
+
121
+ # Sidebar with better organization
122
+ with st.sidebar:
123
+ st.markdown("### Upload Settings")
124
+ uploaded_files = st.file_uploader("Upload Retinal Images",
125
+ type=['png', 'jpeg', 'jpg'],
126
+ accept_multiple_files=True,
127
+ help="Support multiple images in PNG, JPEG formats")
128
+
129
+ st.markdown("### Analysis Settings")
130
+ st.info("πŸ“Š Set confidence threshold to filter results")
131
+ confidence_threshold = st.slider(
132
+ "Classification Confidence Threshold (%)",
133
+ 0, 100, 70,
134
+ help="Images with confidence above this threshold will be marked as reliable predictions")
135
 
 
 
 
136
  if uploaded_files:
137
  for uploaded_file in uploaded_files:
138
  image = Image.open(uploaded_file).convert('RGB')
139
  image_np = np.array(image).astype(np.uint8)
140
 
141
+ with st.spinner(f'πŸ”„ Processing {uploaded_file.name}...'):
142
  model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
143
  disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
144
 
145
+ # Create expandable section for each image
146
+ with st.expander(f"πŸ“Š Analysis Results: {uploaded_file.name}", expanded=True):
147
+ # Image display section
148
+ cols = st.columns(3)
149
+ cols[0].image(image_np, caption="Original Image", use_column_width=True)
150
+ cols[1].image(disc_cup_image, caption="Segmentation Overlay", use_column_width=True)
151
+ cols[2].image(cropped_image, caption="Region of Interest", use_column_width=True)
152
+
153
+ # Metrics section with clear separation
154
+ st.markdown("---")
155
+ metric_cols = st.columns(3)
156
+
157
+ # Classification Results
158
+ with metric_cols[0]:
159
+ st.markdown("### πŸ” Classification")
160
+ diagnosis = model.cls_id2label[disease_idx]
161
+ is_confident = cls_conf >= confidence_threshold
162
+
163
+ # Color-coded diagnosis
164
+ if diagnosis == "Glaucoma":
165
+ st.markdown(f"<div style='padding: 10px; background-color: #ffebee; border-radius: 5px;'>"
166
+ f"<h4 style='color: #c62828;'>Diagnosis: {diagnosis}</h4></div>",
167
+ unsafe_allow_html=True)
168
+ else:
169
+ st.markdown(f"<div style='padding: 10px; background-color: #e8f5e9; border-radius: 5px;'>"
170
+ f"<h4 style='color: #2e7d32;'>Diagnosis: {diagnosis}</h4></div>",
171
+ unsafe_allow_html=True)
172
+
173
+ st.metric("Classification Confidence", f"{cls_conf:.1f}%")
174
+ if not is_confident:
175
+ st.warning("⚠️ Below confidence threshold")
176
+
177
+ # Segmentation Results
178
+ with metric_cols[1]:
179
+ st.markdown("### 🎯 Segmentation Quality")
180
+ st.metric("Optic Cup Confidence", f"{cup_conf:.1f}%")
181
+ st.metric("Optic Disc Confidence", f"{disc_conf:.1f}%")
182
+
183
+ # Confidence level explanation
184
+ cup_level = get_confidence_level(cup_conf)
185
+ disc_level = get_confidence_level(disc_conf)
186
+ st.info(f"Cup Detection: {cup_level}\nDisc Detection: {disc_level}")
187
+
188
+ # Clinical Metrics
189
+ with metric_cols[2]:
190
+ st.markdown("### πŸ“ Clinical Metrics")
191
+ st.metric("Cup-to-Disc Ratio (CDR)", f"{vcdr:.3f}")
192
+
193
+ # CDR interpretation
194
+ if vcdr > 0.7:
195
+ st.warning("⚠️ Elevated CDR (>0.7)")
196
+ elif vcdr > 0.5:
197
+ st.info("ℹ️ Borderline CDR (0.5-0.7)")
198
+ else:
199
+ st.success("βœ… Normal CDR (<0.5)")
200
 
201
+ # Download section
202
  if download_confident_images:
203
+ st.sidebar.markdown("---")
204
+ st.sidebar.markdown("### Download Results")
205
  with zipfile.ZipFile("confident_cropped_images.zip", "w") as zf:
206
  for cropped_image, name in download_confident_images:
207
  img_buffer = io.BytesIO()
208
  Image.fromarray(cropped_image).save(img_buffer, format="PNG")
209
  zf.writestr(f"{name}_cropped.png", img_buffer.getvalue())
210
+
211
+ st.sidebar.download_button(
212
+ label="πŸ“₯ Download Analysis Results",
213
+ data=open("confident_cropped_images.zip", "rb"),
214
+ file_name="glaucoma_analysis_results.zip",
215
+ mime="application/zip",
216
+ help="Download cropped images and analysis results"
217
  )
218
  else:
219
+ # Welcome message when no files are uploaded
220
+ st.markdown("""
221
+ <div style='text-align: center; padding: 50px;'>
222
+ <h3>πŸ‘‹ Welcome to the Glaucoma Screening Tool</h3>
223
+ <p>Upload retinal fundus images using the sidebar to begin analysis</p>
224
+ </div>
225
+ """, unsafe_allow_html=True)
226
 
227
  if __name__ == '__main__':
228
+ main()