luigi12345
commited on
Commit
•
d5fb548
1
Parent(s):
8a1d3d2
app.py
CHANGED
@@ -12,6 +12,7 @@ import pandas as pd
|
|
12 |
from datetime import datetime
|
13 |
import os
|
14 |
import tempfile
|
|
|
15 |
|
16 |
# --- GlaucomaModel Class ---
|
17 |
class GlaucomaModel(object):
|
@@ -183,6 +184,8 @@ def save_results(results, original_images):
|
|
183 |
def main():
|
184 |
st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
|
185 |
|
|
|
|
|
186 |
st.markdown("""
|
187 |
<h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
|
188 |
<p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
|
@@ -197,6 +200,8 @@ def main():
|
|
197 |
help="Support multiple images in PNG, JPEG formats"
|
198 |
)
|
199 |
|
|
|
|
|
200 |
st.sidebar.markdown("### Settings")
|
201 |
max_batch = st.sidebar.number_input("Max Batch Size",
|
202 |
min_value=1,
|
@@ -204,6 +209,8 @@ def main():
|
|
204 |
value=20)
|
205 |
|
206 |
if uploaded_files:
|
|
|
|
|
207 |
if len(uploaded_files) > max_batch:
|
208 |
st.warning(f"Please upload maximum {max_batch} images at once.")
|
209 |
return
|
@@ -211,60 +218,79 @@ def main():
|
|
211 |
st.markdown(f"Total images: {len(uploaded_files)}")
|
212 |
st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
images_data = []
|
219 |
-
original_images = []
|
220 |
-
for file in uploaded_files:
|
221 |
-
try:
|
222 |
-
image = Image.open(file).convert('RGB')
|
223 |
-
image_np = np.array(image)
|
224 |
-
images_data.append((file.name, image_np))
|
225 |
-
original_images.append(image_np)
|
226 |
-
except Exception as e:
|
227 |
-
st.error(f"Error loading {file.name}: {str(e)}")
|
228 |
-
continue
|
229 |
-
|
230 |
-
progress = st.progress(0)
|
231 |
-
st.write(f"Processing {len(images_data)} images...")
|
232 |
-
|
233 |
-
# Process all images
|
234 |
-
results = process_batch(model, images_data, progress)
|
235 |
-
|
236 |
-
if results:
|
237 |
-
# Show results one by one
|
238 |
-
for result in results:
|
239 |
-
st.markdown(f"### Results for {result['file_name']}")
|
240 |
-
st.markdown(f"**Diagnosis:** {result['diagnosis']}")
|
241 |
-
st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
|
242 |
-
st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
|
243 |
-
|
244 |
-
# Display images
|
245 |
-
st.image(result['processed_image'], caption="Segmentation")
|
246 |
-
st.image(result['cropped_image'], caption="ROI")
|
247 |
-
st.markdown("---")
|
248 |
|
249 |
-
#
|
250 |
-
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
st.
|
265 |
-
st.
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
if __name__ == "__main__":
|
|
|
270 |
main()
|
|
|
12 |
from datetime import datetime
|
13 |
import os
|
14 |
import tempfile
|
15 |
+
import base64
|
16 |
|
17 |
# --- GlaucomaModel Class ---
|
18 |
class GlaucomaModel(object):
|
|
|
184 |
def main():
|
185 |
st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool")
|
186 |
|
187 |
+
print("App started") # Debug print
|
188 |
+
|
189 |
st.markdown("""
|
190 |
<h1 style='text-align: center;'>Glaucoma Screening from Retinal Fundus Images</h1>
|
191 |
<p style='text-align: center; color: gray;'>Upload retinal images for automated glaucoma detection and optic disc/cup segmentation</p>
|
|
|
200 |
help="Support multiple images in PNG, JPEG formats"
|
201 |
)
|
202 |
|
203 |
+
print(f"Files uploaded: {uploaded_files}") # Debug print
|
204 |
+
|
205 |
st.sidebar.markdown("### Settings")
|
206 |
max_batch = st.sidebar.number_input("Max Batch Size",
|
207 |
min_value=1,
|
|
|
209 |
value=20)
|
210 |
|
211 |
if uploaded_files:
|
212 |
+
print("Processing uploaded files") # Debug print
|
213 |
+
|
214 |
if len(uploaded_files) > max_batch:
|
215 |
st.warning(f"Please upload maximum {max_batch} images at once.")
|
216 |
return
|
|
|
218 |
st.markdown(f"Total images: {len(uploaded_files)}")
|
219 |
st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}")
|
220 |
|
221 |
+
try:
|
222 |
+
# Initialize model
|
223 |
+
print("Initializing model") # Debug print
|
224 |
+
model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
+
# Process images
|
227 |
+
images_data = []
|
228 |
+
original_images = []
|
229 |
+
print("Starting image processing") # Debug print
|
230 |
|
231 |
+
for file in uploaded_files:
|
232 |
+
try:
|
233 |
+
print(f"Processing file: {file.name}") # Debug print
|
234 |
+
image = Image.open(file).convert('RGB')
|
235 |
+
image_np = np.array(image)
|
236 |
+
images_data.append((file.name, image_np))
|
237 |
+
original_images.append(image_np)
|
238 |
+
except Exception as e:
|
239 |
+
print(f"Error processing file {file.name}: {str(e)}") # Debug print
|
240 |
+
st.error(f"Error loading {file.name}: {str(e)}")
|
241 |
+
continue
|
242 |
|
243 |
+
if not images_data:
|
244 |
+
st.error("No valid images to process!")
|
245 |
+
return
|
246 |
+
|
247 |
+
progress = st.progress(0)
|
248 |
+
st.write(f"Processing {len(images_data)} images...")
|
249 |
+
|
250 |
+
# Process all images
|
251 |
+
print("Starting batch processing") # Debug print
|
252 |
+
results = process_batch(model, images_data, progress)
|
253 |
+
print(f"Batch processing complete. Results: {len(results)}") # Debug print
|
254 |
+
|
255 |
+
if results:
|
256 |
+
print("Showing results") # Debug print
|
257 |
+
# Show results one by one
|
258 |
+
for result in results:
|
259 |
+
st.markdown(f"### Results for {result['file_name']}")
|
260 |
+
st.markdown(f"**Diagnosis:** {result['diagnosis']}")
|
261 |
+
st.markdown(f"**Confidence:** {result['confidence']:.1f}%")
|
262 |
+
st.markdown(f"**VCDR:** {result['vcdr']:.3f}")
|
263 |
+
|
264 |
+
# Display images
|
265 |
+
st.image(result['processed_image'], caption="Segmentation")
|
266 |
+
st.image(result['cropped_image'], caption="ROI")
|
267 |
+
st.markdown("---")
|
268 |
+
|
269 |
+
# Generate downloads
|
270 |
+
print("Generating ZIP file") # Debug print
|
271 |
+
zip_data = save_results(results, original_images)
|
272 |
+
|
273 |
+
st.markdown("### Download Results")
|
274 |
+
# Replace download_button with direct download link
|
275 |
+
filename = f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
|
276 |
+
st.markdown(
|
277 |
+
f'<a href="data:application/zip;base64,{base64.b64encode(zip_data).decode()}" download="{filename}">Download All Results (ZIP)</a>',
|
278 |
+
unsafe_allow_html=True
|
279 |
+
)
|
280 |
+
|
281 |
+
# Simple summary
|
282 |
+
st.markdown("### Summary")
|
283 |
+
glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma')
|
284 |
+
normal_count = len(results) - glaucoma_count
|
285 |
+
st.markdown(f"**Total Processed:** {len(results)}")
|
286 |
+
st.markdown(f"**Glaucoma Detected:** {glaucoma_count}")
|
287 |
+
st.markdown(f"**Normal:** {normal_count}")
|
288 |
+
st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%")
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
print(f"Error in main processing: {str(e)}") # Debug print
|
292 |
+
st.error(f"An error occurred: {str(e)}")
|
293 |
|
294 |
if __name__ == "__main__":
|
295 |
+
print("Starting main") # Debug print
|
296 |
main()
|