import cv2 import torch import numpy as np import torch.nn.functional as F from torch import nn from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation import matplotlib.pyplot as plt import streamlit as st from PIL import Image import io import zipfile import os # --- GlaucomaModel Class --- class GlaucomaModel(object): def __init__(self, cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation', device=torch.device('cpu')): self.device = device # Classification model for glaucoma self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() # Segmentation model for optic disc and cup self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path) self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval() # Mapping for class labels self.cls_id2label = self.cls_model.config.id2label def glaucoma_pred(self, image): inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.cls_model(**inputs).logits probs = F.softmax(outputs, dim=-1) disease_idx = probs.cpu()[0, :].numpy().argmax() confidence = probs.cpu()[0, disease_idx].item() * 100 return disease_idx, confidence def optic_disc_cup_pred(self, image): inputs = self.seg_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.seg_model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.shape[:2], mode="bilinear", align_corners=False ) seg_probs = F.softmax(upsampled_logits, dim=1) pred_disc_cup = upsampled_logits.argmax(dim=1)[0] cup_confidence = seg_probs[0, 2, :, :].mean().item() * 100 disc_confidence = seg_probs[0, 1, :, :].mean().item() * 100 return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence def process(self, image): disease_idx, cls_confidence = self.glaucoma_pred(image) disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image) try: vcdr = simple_vcdr(disc_cup) except: vcdr = np.nan mask = (disc_cup > 0).astype(np.uint8) x, y, w, h = cv2.boundingRect(mask) padding = max(50, int(0.2 * max(w, h))) x = max(x - padding, 0) y = max(y - padding, 0) w = min(w + 2 * padding, image.shape[1] - x) h = min(h + 2 * padding, image.shape[0] - y) cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy() _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2) return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image # --- Utility Functions --- def simple_vcdr(mask): disc_area = np.sum(mask == 1) cup_area = np.sum(mask == 2) if disc_area == 0: return np.nan vcdr = cup_area / disc_area return vcdr def add_mask(image, mask, classes, colors, alpha=0.5): overlay = image.copy() for class_id, color in zip(classes, colors): overlay[mask == class_id] = color output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0) return output, overlay # --- Streamlit Interface --- def main(): st.set_page_config(layout="wide") st.title("Batch Glaucoma Screening from Retinal Fundus Images") # Explanation for the confidence threshold st.sidebar.write("**Confidence Threshold** (optional): Set a threshold to filter images based on the model's confidence in glaucoma classification.") confidence_threshold = st.sidebar.slider("Confidence Threshold (%)", 0, 100, 70) uploaded_files = st.sidebar.file_uploader("Upload Images", type=['png', 'jpeg', 'jpg'], accept_multiple_files=True) confident_images = [] download_confident_images = [] if uploaded_files: for uploaded_file in uploaded_files: image = Image.open(uploaded_file).convert('RGB') image_np = np.array(image).astype(np.uint8) with st.spinner(f'Processing {uploaded_file.name}...'): model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")) disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np) # Confidence-based grouping is_confident = cls_conf >= confidence_threshold if is_confident: confident_images.append(uploaded_file.name) download_confident_images.append((cropped_image, uploaded_file.name)) # Display Results with st.container(): st.subheader(f"Results for {uploaded_file.name}") cols = st.beta_columns(4) # Use st.beta_columns for compatibility with older Streamlit cols[0].image(image_np, caption="Input Image", use_column_width=True) cols[1].image(disc_cup_image, caption="Disc/Cup Segmentation", use_column_width=True) cols[2].image(image_np, caption="Class Activation Map", use_column_width=True) cols[3].image(cropped_image, caption="Cropped Image", use_column_width=True) st.write(f"**Vertical cup-to-disc ratio:** {vcdr:.04f}") st.write(f"**Category:** {model.cls_id2label[disease_idx]} ({cls_conf:.02f}% confidence)") st.write(f"**Optic Cup Segmentation Confidence:** {cup_conf:.02f}%") st.write(f"**Optic Disc Segmentation Confidence:** {disc_conf:.02f}%") st.write(f"**Confidence Group:** {'Confident' if is_confident else 'Not Confident'}") # Download Link for Confident Images if download_confident_images: with zipfile.ZipFile("confident_cropped_images.zip", "w") as zf: for cropped_image, name in download_confident_images: img_buffer = io.BytesIO() Image.fromarray(cropped_image).save(img_buffer, format="PNG") zf.writestr(f"{name}_cropped.png", img_buffer.getvalue()) # Provide a markdown link to the ZIP file st.sidebar.markdown( f"[Download Confident Cropped Images](./confident_cropped_images.zip)", unsafe_allow_html=True ) else: st.sidebar.info("Upload images to begin analysis.") if __name__ == '__main__': main()