import cv2 import torch import numpy as np import torch.nn.functional as F from torch import nn from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation import streamlit as st from PIL import Image import io import zipfile import pandas as pd from datetime import datetime import os import tempfile import base64 # --- GlaucomaModel Class --- class GlaucomaModel(object): def __init__(self, cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation', device=torch.device('cpu')): self.device = device # Classification model for glaucoma self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() # Segmentation model for optic disc and cup self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path) self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval() # Mapping for class labels self.cls_id2label = self.cls_model.config.id2label def glaucoma_pred(self, image): inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.cls_model(**inputs).logits probs = F.softmax(outputs, dim=-1) disease_idx = probs.cpu()[0, :].numpy().argmax() confidence = probs.cpu()[0, disease_idx].item() * 100 return disease_idx, confidence def optic_disc_cup_pred(self, image): inputs = self.seg_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.seg_model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.shape[:2], mode="bilinear", align_corners=False ) seg_probs = F.softmax(upsampled_logits, dim=1) pred_disc_cup = upsampled_logits.argmax(dim=1)[0] # Calculate segmentation confidence based on probability distribution # For each pixel classified as cup/disc, check how confident the model is cup_mask = pred_disc_cup == 2 disc_mask = pred_disc_cup == 1 # Get confidence only for pixels predicted as cup/disc cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0 disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0 return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence def process(self, image): disease_idx, cls_confidence = self.glaucoma_pred(image) disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image) try: vcdr = simple_vcdr(disc_cup) except: vcdr = np.nan mask = (disc_cup > 0).astype(np.uint8) x, y, w, h = cv2.boundingRect(mask) padding = max(50, int(0.2 * max(w, h))) x = max(x - padding, 0) y = max(y - padding, 0) w = min(w + 2 * padding, image.shape[1] - x) h = min(h + 2 * padding, image.shape[0] - y) cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy() _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2) return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image # --- Utility Functions --- def simple_vcdr(mask): disc_area = np.sum(mask == 1) cup_area = np.sum(mask == 2) if disc_area == 0: return np.nan vcdr = cup_area / disc_area return vcdr def add_mask(image, mask, classes, colors, alpha=0.5): overlay = image.copy() for class_id, color in zip(classes, colors): overlay[mask == class_id] = color output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0) return output, overlay def get_confidence_level(confidence): """Enhanced confidence descriptions for segmentation""" if confidence >= 90: return "Excellent (Very clear boundaries)" elif confidence >= 75: return "Good (Clear boundaries)" elif confidence >= 60: return "Fair (Visible but some unclear areas)" elif confidence >= 45: return "Poor (Difficult to determine)" else: return "Very Poor (Not reliable)" def process_batch(model, images_data, progress_bar=None): results = [] for idx, (file_name, image) in enumerate(images_data): try: disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image) results.append({ 'file_name': file_name, 'diagnosis': model.cls_id2label[disease_idx], 'confidence': cls_conf, 'vcdr': vcdr, 'cup_conf': cup_conf, 'disc_conf': disc_conf, 'processed_image': disc_cup_image, 'cropped_image': cropped_image }) if progress_bar: progress_bar.progress((idx + 1) / len(images_data)) except Exception as e: st.error(f"Error processing {file_name}: {str(e)}") return results def save_results(results, original_images): # Create temporary directory for results with tempfile.TemporaryDirectory() as temp_dir: # Save report as CSV df = pd.DataFrame([{ 'File': r['file_name'], 'Diagnosis': r['diagnosis'], 'Confidence (%)': f"{r['confidence']:.1f}", 'VCDR': f"{r['vcdr']:.3f}", 'Cup Confidence (%)': f"{r['cup_conf']:.1f}", 'Disc Confidence (%)': f"{r['disc_conf']:.1f}" } for r in results]) report_path = os.path.join(temp_dir, 'report.csv') df.to_csv(report_path, index=False) # Save processed images for result, orig_img in zip(results, original_images): img_name = result['file_name'] base_name = os.path.splitext(img_name)[0] # Save original orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg") Image.fromarray(orig_img).save(orig_path) # Save segmentation seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg") Image.fromarray(result['processed_image']).save(seg_path) # Save ROI roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg") Image.fromarray(result['cropped_image']).save(roi_path) # Create ZIP file zip_path = os.path.join(temp_dir, 'results.zip') with zipfile.ZipFile(zip_path, 'w') as zipf: for root, _, files in os.walk(temp_dir): for file in files: if file != 'results.zip': file_path = os.path.join(root, file) arcname = os.path.basename(file_path) zipf.write(file_path, arcname) with open(zip_path, 'rb') as f: return f.read() # --- Streamlit Interface --- def main(): # Use the old layout setting method st.set_page_config(layout="wide") # Use simple title instead of markdown st.title("Glaucoma Screening from Retinal Fundus Images") st.write("Upload retinal images for automated glaucoma detection and optic disc/cup segmentation") # Sidebar using old method st.sidebar.title("Upload Images") st.set_option('deprecation.showfileUploaderEncoding', False) # Important for old versions uploaded_files = st.sidebar.file_uploader( "Upload retinal images", type=['png', 'jpeg', 'jpg'], accept_multiple_files=True ) # Simple explanation in sidebar st.sidebar.markdown(""" ### Understanding Results: - Diagnosis Confidence: AI certainty level - VCDR: Cup to disc ratio (>0.7 high risk) - Segmentation: Accuracy of detection """) if uploaded_files: st.write("Loading AI models...") try: model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")) for file in uploaded_files: try: # Process each image st.write(f"Processing: {file.name}") image = Image.open(file).convert('RGB') image_np = np.array(image) # Get predictions disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np) # Enhanced results display st.write("---") st.write(f"Results for {file.name}") # Diagnosis section st.write("📊 **Diagnosis Results:**") st.write(f"• Finding: {model.cls_id2label[disease_idx]}") st.write(f"• AI Confidence: {cls_conf:.1f}% ({get_confidence_level(cls_conf)})") # Segmentation confidence section st.write("\n🔍 **Segmentation Quality:**") st.write(f"• Optic Cup Detection: {cup_conf:.1f}% - {get_confidence_level(cup_conf)}") st.write(f"• Optic Disc Detection: {disc_conf:.1f}% - {get_confidence_level(disc_conf)}") # Clinical metrics st.write("\n📏 **Clinical Measurements:**") st.write(f"• Cup-to-Disc Ratio (VCDR): {vcdr:.3f}") if vcdr > 0.7: st.write(" ⚠️ High VCDR - Potential risk indicator") elif vcdr > 0.5: st.write(" ℹ️ Borderline VCDR - Follow-up recommended") else: st.write(" ✅ Normal VCDR range") # Image display with enhanced captions st.write("\n🖼️ **Visual Analysis:**") st.image(disc_cup_image, caption=""" Segmentation Overlay • Green outline: Optic Disc boundary • Red area: Optic Cup region • Transparency shows underlying retina """) st.image(cropped_image, caption="Zoomed Region of Interest") # Add quality note if needed if cup_conf < 60 or disc_conf < 60: st.write("\n⚠️ Note: Low segmentation confidence. Image quality might affect measurements.") except Exception as e: st.error(f"Error processing {file.name}: {str(e)}") continue # Simple summary at the end st.write("---") st.write("Processing complete!") except Exception as e: st.error(f"An error occurred: {str(e)}") if __name__ == "__main__": main()