import cv2 import torch import numpy as np import torch.nn.functional as F from torch import nn from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation import streamlit as st from PIL import Image import io import zipfile import pandas as pd from datetime import datetime import os import tempfile import base64 # --- GlaucomaModel Class --- class GlaucomaModel(object): def __init__(self, cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", seg_model_path='pamixsun/segformer_for_optic_disc_cup_segmentation', device=torch.device('cpu')): self.device = device # Classification model for glaucoma self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() # Segmentation model for optic disc and cup self.seg_extractor = AutoImageProcessor.from_pretrained(seg_model_path) self.seg_model = SegformerForSemanticSegmentation.from_pretrained(seg_model_path).to(device).eval() # Mapping for class labels self.cls_id2label = self.cls_model.config.id2label def glaucoma_pred(self, image): inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.cls_model(**inputs).logits probs = F.softmax(outputs, dim=-1) disease_idx = probs.cpu()[0, :].numpy().argmax() confidence = probs.cpu()[0, disease_idx].item() * 100 return disease_idx, confidence def optic_disc_cup_pred(self, image): inputs = self.seg_extractor(images=image.copy(), return_tensors="pt") with torch.no_grad(): inputs.to(self.device) outputs = self.seg_model(**inputs) logits = outputs.logits.cpu() upsampled_logits = nn.functional.interpolate( logits, size=image.shape[:2], mode="bilinear", align_corners=False ) seg_probs = F.softmax(upsampled_logits, dim=1) pred_disc_cup = upsampled_logits.argmax(dim=1)[0] # Calculate segmentation confidence based on probability distribution # For each pixel classified as cup/disc, check how confident the model is cup_mask = pred_disc_cup == 2 disc_mask = pred_disc_cup == 1 # Get confidence only for pixels predicted as cup/disc cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0 disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0 return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence def process(self, image): disease_idx, cls_confidence = self.glaucoma_pred(image) disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image) try: vcdr = simple_vcdr(disc_cup) except: vcdr = np.nan mask = (disc_cup > 0).astype(np.uint8) x, y, w, h = cv2.boundingRect(mask) padding = max(50, int(0.2 * max(w, h))) x = max(x - padding, 0) y = max(y - padding, 0) w = min(w + 2 * padding, image.shape[1] - x) h = min(h + 2 * padding, image.shape[0] - y) cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy() _, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2) return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image # --- Utility Functions --- def simple_vcdr(mask): disc_area = np.sum(mask == 1) cup_area = np.sum(mask == 2) if disc_area == 0: return np.nan vcdr = cup_area / disc_area return vcdr def add_mask(image, mask, classes, colors, alpha=0.5): overlay = image.copy() for class_id, color in zip(classes, colors): overlay[mask == class_id] = color output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0) return output, overlay def get_confidence_level(confidence): if confidence >= 90: return "Very High" elif confidence >= 75: return "High" elif confidence >= 60: return "Moderate" elif confidence >= 45: return "Low" else: return "Very Low" def process_batch(model, images_data, progress_bar=None): results = [] for idx, (file_name, image) in enumerate(images_data): try: disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image) results.append({ 'file_name': file_name, 'diagnosis': model.cls_id2label[disease_idx], 'confidence': cls_conf, 'vcdr': vcdr, 'cup_conf': cup_conf, 'disc_conf': disc_conf, 'processed_image': disc_cup_image, 'cropped_image': cropped_image }) if progress_bar: progress_bar.progress((idx + 1) / len(images_data)) except Exception as e: st.error(f"Error processing {file_name}: {str(e)}") return results def save_results(results, original_images): # Create temporary directory for results with tempfile.TemporaryDirectory() as temp_dir: # Save report as CSV df = pd.DataFrame([{ 'File': r['file_name'], 'Diagnosis': r['diagnosis'], 'Confidence (%)': f"{r['confidence']:.1f}", 'VCDR': f"{r['vcdr']:.3f}", 'Cup Confidence (%)': f"{r['cup_conf']:.1f}", 'Disc Confidence (%)': f"{r['disc_conf']:.1f}" } for r in results]) report_path = os.path.join(temp_dir, 'report.csv') df.to_csv(report_path, index=False) # Save processed images for result, orig_img in zip(results, original_images): img_name = result['file_name'] base_name = os.path.splitext(img_name)[0] # Save original orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg") Image.fromarray(orig_img).save(orig_path) # Save segmentation seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg") Image.fromarray(result['processed_image']).save(seg_path) # Save ROI roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg") Image.fromarray(result['cropped_image']).save(roi_path) # Create ZIP file zip_path = os.path.join(temp_dir, 'results.zip') with zipfile.ZipFile(zip_path, 'w') as zipf: for root, _, files in os.walk(temp_dir): for file in files: if file != 'results.zip': file_path = os.path.join(root, file) arcname = os.path.basename(file_path) zipf.write(file_path, arcname) with open(zip_path, 'rb') as f: return f.read() # --- Streamlit Interface --- def main(): st.set_page_config(layout="wide", page_title="Glaucoma Screening Tool") print("App started") # Debug print st.markdown("""
Upload retinal images for automated glaucoma detection and optic disc/cup segmentation
""", unsafe_allow_html=True) # Simple sidebar without columns st.sidebar.markdown("### 📤 Upload Images") uploaded_files = st.sidebar.file_uploader( "Upload Retinal Images", type=['png', 'jpeg', 'jpg'], accept_multiple_files=True, help="Support multiple images in PNG, JPEG formats" ) print(f"Files uploaded: {uploaded_files}") # Debug print st.sidebar.markdown("### Settings") max_batch = st.sidebar.number_input("Max Batch Size", min_value=1, max_value=100, value=20) if uploaded_files: print("Processing uploaded files") # Debug print if len(uploaded_files) > max_batch: st.warning(f"Please upload maximum {max_batch} images at once.") return st.markdown(f"Total images: {len(uploaded_files)}") st.markdown(f"Using: {'GPU' if torch.cuda.is_available() else 'CPU'}") try: # Initialize model print("Initializing model") # Debug print model = GlaucomaModel(device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")) # Process images images_data = [] original_images = [] print("Starting image processing") # Debug print for file in uploaded_files: try: print(f"Processing file: {file.name}") # Debug print image = Image.open(file).convert('RGB') image_np = np.array(image) images_data.append((file.name, image_np)) original_images.append(image_np) except Exception as e: print(f"Error processing file {file.name}: {str(e)}") # Debug print st.error(f"Error loading {file.name}: {str(e)}") continue if not images_data: st.error("No valid images to process!") return progress = st.progress(0) st.write(f"Processing {len(images_data)} images...") # Process all images print("Starting batch processing") # Debug print results = process_batch(model, images_data, progress) print(f"Batch processing complete. Results: {len(results)}") # Debug print if results: print("Showing results") # Debug print # Show results one by one for result in results: st.markdown(f"### Results for {result['file_name']}") st.markdown(f"**Diagnosis:** {result['diagnosis']}") st.markdown(f"**Confidence:** {result['confidence']:.1f}%") st.markdown(f"**VCDR:** {result['vcdr']:.3f}") # Display images st.image(result['processed_image'], caption="Segmentation") st.image(result['cropped_image'], caption="ROI") st.markdown("---") # Generate downloads print("Generating ZIP file") # Debug print zip_data = save_results(results, original_images) st.markdown("### Download Results") # Replace download_button with direct download link filename = f"glaucoma_screening_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip" st.markdown( f'Download All Results (ZIP)', unsafe_allow_html=True ) # Simple summary st.markdown("### Summary") glaucoma_count = sum(1 for r in results if r['diagnosis'] == 'Glaucoma') normal_count = len(results) - glaucoma_count st.markdown(f"**Total Processed:** {len(results)}") st.markdown(f"**Glaucoma Detected:** {glaucoma_count}") st.markdown(f"**Normal:** {normal_count}") st.markdown(f"**Average Confidence:** {sum(r['confidence'] for r in results) / len(results):.1f}%") except Exception as e: print(f"Error in main processing: {str(e)}") # Debug print st.error(f"An error occurred: {str(e)}") if __name__ == "__main__": print("Starting main") # Debug print main()