Spaces:
Running
on
L40S
Running
on
L40S
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
5 |
+
from diffusers.utils import export_to_video, load_image
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
# Ensure 'checkpoint' directory exists
|
11 |
+
os.makedirs("checkpoints", exist_ok=True)
|
12 |
+
|
13 |
+
hf_hub_download(
|
14 |
+
repo_id="wenqsun/DimensionX",
|
15 |
+
filename="orbit_left_lora_weights.safetensors",
|
16 |
+
local_dir="checkpoints"
|
17 |
+
)
|
18 |
+
|
19 |
+
hf_hub_download(
|
20 |
+
repo_id="wenqsun/DimensionX",
|
21 |
+
filename="orbit_up_lora_weights.safetensors",
|
22 |
+
local_dir="checkpoints"
|
23 |
+
)
|
24 |
+
|
25 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16)
|
26 |
+
|
27 |
+
def infer(prompt, image_path, orbit_type):
|
28 |
+
lora_path = None
|
29 |
+
if orbit_type == "Left":
|
30 |
+
lora_path = "checkpoints/orbit_left_lora_weights.safetensors"
|
31 |
+
elif orbit_type == "Up":
|
32 |
+
lora_path = "checkpoints/orbit_up_lora_weights.safetensors"
|
33 |
+
lora_rank = 256
|
34 |
+
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1")
|
35 |
+
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
36 |
+
pipe.to("cuda")
|
37 |
+
|
38 |
+
|
39 |
+
prompt = f"A{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
40 |
+
image = load_image(image_path)
|
41 |
+
seed = random.randint(0, 2**8 - 1)
|
42 |
+
|
43 |
+
video = pipe(
|
44 |
+
image,
|
45 |
+
prompt,
|
46 |
+
num_inference_steps=50, # NOT Changed
|
47 |
+
guidance_scale=7.0, # NOT Changed
|
48 |
+
use_dynamic_cfg=True,
|
49 |
+
generator=torch.Generator(device="cpu").manual_seed(seed)
|
50 |
+
)
|
51 |
+
|
52 |
+
# Generate a timestamp for the output filename
|
53 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
54 |
+
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
55 |
+
return f"output_{timestamp}.mp4"
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
with gr.Column(elem_id="col-container"):
|
59 |
+
gr.Markdown("# DimensionX")
|
60 |
+
gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
image_in = gr.Image(label="Image Input", type="filepath")
|
64 |
+
prompt = gr.Textbox(label="Prompt")
|
65 |
+
orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left")
|
66 |
+
submit_btn = gr.Button("Submit")
|
67 |
+
with gr.Column():
|
68 |
+
video_out = gr.Video(label="Video output")
|
69 |
+
examples = gr.Examples(
|
70 |
+
examples = [
|
71 |
+
[
|
72 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
|
73 |
+
"An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
|
74 |
+
"Left"
|
75 |
+
]
|
76 |
+
],
|
77 |
+
inputs=[image_in, prompt, orbit_type]
|
78 |
+
)
|
79 |
+
|
80 |
+
submit_btn.click(
|
81 |
+
fn=infer,
|
82 |
+
inputs=[image_in, prompt, orbit_type],
|
83 |
+
outputs=[video_out]
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.queue().launch(show_error=True, show_api=False)
|