Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -35,6 +35,9 @@ vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dt
|
|
35 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
36 |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
37 |
|
|
|
|
|
|
|
38 |
def find_and_move_object_to_cpu():
|
39 |
for obj in gc.get_objects():
|
40 |
try:
|
@@ -52,52 +55,48 @@ def clear_gpu():
|
|
52 |
gc.collect()
|
53 |
|
54 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
55 |
|
56 |
lora_path = "checkpoints/"
|
57 |
-
if orbit_type == "Left"
|
58 |
-
weight_name = "orbit_left_lora_weights.safetensors"
|
59 |
-
#adapter_name = "orbit_left_lora_weights"
|
60 |
-
elif orbit_type == "Up":
|
61 |
-
weight_name = "orbit_up_lora_weights.safetensors"
|
62 |
-
#adapter_name = "orbit_up_lora_weights"
|
63 |
lora_rank = 128
|
64 |
-
|
65 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
66 |
|
67 |
-
# Load LoRA weights on CPU
|
68 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
|
69 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
#
|
75 |
-
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
76 |
-
image = load_image(image_path)
|
77 |
-
seed = random.randint(0, 2**8 - 1)
|
78 |
-
|
79 |
-
|
80 |
-
video = pipe(
|
81 |
-
image,
|
82 |
-
prompt,
|
83 |
-
num_inference_steps=25,
|
84 |
-
guidance_scale=7.0,
|
85 |
-
use_dynamic_cfg=True,
|
86 |
-
generator=torch.Generator(device="cpu").manual_seed(seed)
|
87 |
-
)
|
88 |
-
|
89 |
-
torch.cuda.empty_cache()
|
90 |
-
pipe.unfuse_lora()
|
91 |
-
pipe.unload_lora_weights()
|
92 |
-
|
93 |
-
|
94 |
-
# Generate and save output video
|
95 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
96 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
97 |
-
|
98 |
-
# Move objects to CPU and clear GPU memory immediately after inference
|
99 |
-
find_and_move_object_to_cpu()
|
100 |
-
clear_gpu()
|
101 |
|
102 |
return f"output_{timestamp}.mp4"
|
103 |
|
|
|
35 |
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
36 |
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
37 |
|
38 |
+
# Add this near the top after imports
|
39 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
40 |
+
|
41 |
def find_and_move_object_to_cpu():
|
42 |
for obj in gc.get_objects():
|
43 |
try:
|
|
|
55 |
gc.collect()
|
56 |
|
57 |
def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
|
58 |
+
# Move everything to CPU initially
|
59 |
+
pipe.to("cpu")
|
60 |
+
torch.cuda.empty_cache()
|
61 |
|
62 |
lora_path = "checkpoints/"
|
63 |
+
weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors"
|
|
|
|
|
|
|
|
|
|
|
64 |
lora_rank = 128
|
|
|
65 |
adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
66 |
|
67 |
+
# Load LoRA weights on CPU
|
68 |
pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
|
69 |
pipe.fuse_lora(lora_scale=1 / lora_rank)
|
70 |
|
71 |
+
try:
|
72 |
+
# Move to GPU just before inference
|
73 |
+
pipe.to("cuda")
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
|
76 |
+
prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
|
77 |
+
image = load_image(image_path)
|
78 |
+
seed = random.randint(0, 2**8 - 1)
|
79 |
+
|
80 |
+
with torch.inference_mode():
|
81 |
+
video = pipe(
|
82 |
+
image,
|
83 |
+
prompt,
|
84 |
+
num_inference_steps=25,
|
85 |
+
guidance_scale=7.0,
|
86 |
+
use_dynamic_cfg=True,
|
87 |
+
generator=torch.Generator(device="cpu").manual_seed(seed)
|
88 |
+
)
|
89 |
+
finally:
|
90 |
+
# Ensure cleanup happens even if inference fails
|
91 |
+
pipe.to("cpu")
|
92 |
+
pipe.unfuse_lora()
|
93 |
+
pipe.unload_lora_weights()
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
gc.collect()
|
96 |
|
97 |
+
# Generate output video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
99 |
export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
|
|
|
|
|
|
|
|
|
100 |
|
101 |
return f"output_{timestamp}.mp4"
|
102 |
|