File size: 8,571 Bytes
03a856a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from typing import List

import av
import cv2
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection

from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_echo import EchoUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echo_mimic_pose_acc import AudioPose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid, crop_and_pad
import sys
from src.models.face_locator import FaceLocator
from moviepy.editor import VideoFileClip, AudioFileClip
from facenet_pytorch import MTCNN
from src.utils.draw_utils import FaceMeshVisualizer
import pickle


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/prompts/animation_pose_acc.yaml")
    parser.add_argument("-W", type=int, default=512)
    parser.add_argument("-H", type=int, default=512)
    parser.add_argument("-L", type=int, default=160)
    parser.add_argument("--seed", type=int, default=420)
    parser.add_argument("--facemusk_dilation_ratio", type=float, default=0.1)
    parser.add_argument("--facecrop_dilation_ratio", type=float, default=0.5)

    parser.add_argument("--context_frames", type=int, default=12)
    parser.add_argument("--context_overlap", type=int, default=3)

    parser.add_argument("--cfg", type=float, default=1.0)
    parser.add_argument("--steps", type=int, default=6)
    parser.add_argument("--sample_rate", type=int, default=16000)
    parser.add_argument("--fps", type=int, default=24)
    parser.add_argument("--device", type=str, default="cuda")

    args = parser.parse_args()

    return args

def select_face(det_bboxes, probs):
    ## max face from faces that the prob is above 0.8
    ## box: xyxy
    filtered_bboxes = []
    for bbox_i in range(len(det_bboxes)):
        if probs[bbox_i] > 0.8:
            filtered_bboxes.append(det_bboxes[bbox_i])
    if len(filtered_bboxes) == 0:
        return None

    sorted_bboxes = sorted(filtered_bboxes, key=lambda x:(x[3]-x[1]) * (x[2] - x[0]), reverse=True)
    return sorted_bboxes[0]


def main():
    args = parse_args()

    config = OmegaConf.load(args.config)
    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    else:
        weight_dtype = torch.float32

    device = args.device
    if device.__contains__("cuda") and not torch.cuda.is_available():
        device = "cpu"

    inference_config_path = config.inference_config
    infer_config = OmegaConf.load(inference_config_path)

    ############# model_init started #############

    ## vae init
    vae = AutoencoderKL.from_pretrained(
        config.pretrained_vae_path,
    ).to("cuda", dtype=weight_dtype)

    ## reference net init
    reference_unet = UNet2DConditionModel.from_pretrained(
        config.pretrained_base_model_path,
        subfolder="unet",
    ).to(dtype=weight_dtype, device=device)
    reference_unet.load_state_dict(
        torch.load(config.reference_unet_path, map_location="cpu"),
    )

    ## denoising net init
    if os.path.exists(config.motion_module_path):
        ### stage1 + stage2
        denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
            config.pretrained_base_model_path,
            config.motion_module_path,
            subfolder="unet",
            unet_additional_kwargs=infer_config.unet_additional_kwargs,
        ).to(dtype=weight_dtype, device=device)
    else:
        ### only stage1
        denoising_unet = EchoUNet3DConditionModel.from_pretrained_2d(
            config.pretrained_base_model_path,
            "",
            subfolder="unet",
            unet_additional_kwargs={
                "use_motion_module": False,
                "unet_use_temporal_attention": False,
                "cross_attention_dim": infer_config.unet_additional_kwargs.cross_attention_dim
            }
        ).to(dtype=weight_dtype, device=device)
    denoising_unet.load_state_dict(
        torch.load(config.denoising_unet_path, map_location="cpu"),
        strict=False
    )

    ## face locator init
    face_locator = FaceLocator(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
        dtype=weight_dtype, device="cuda"
    )
    face_locator.load_state_dict(torch.load(config.face_locator_path))

    visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)

    ### load audio processor params
    audio_processor = load_audio_model(model_path=config.audio_model_path, device=device)

    ### load face detector params
    face_detector = MTCNN(image_size=320, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device)

    ############# model_init finished #############

    width, height = args.W, args.H
    sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
    scheduler = DDIMScheduler(**sched_kwargs)

    pipe = AudioPose2VideoPipeline(
        vae=vae,
        reference_unet=reference_unet,
        denoising_unet=denoising_unet,
        audio_guider=audio_processor,
        face_locator=face_locator,
        scheduler=scheduler,
    )

    pipe = pipe.to("cuda", dtype=weight_dtype)

    date_str = datetime.now().strftime("%Y%m%d")
    time_str = datetime.now().strftime("%H%M")
    save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"
    save_dir = Path(f"output/{date_str}/{save_dir_name}")
    save_dir.mkdir(exist_ok=True, parents=True)

    for ref_image_path in config["test_cases"].keys():
        for file_path in config["test_cases"][ref_image_path]:
            if ".wav" in file_path:
                audio_path = file_path
            else:
                pose_dir = file_path

        if args.seed is not None and args.seed > -1:
            generator = torch.manual_seed(args.seed)
        else:
            generator = torch.manual_seed(random.randint(100, 1000000))

        ref_name = Path(ref_image_path).stem
        audio_name = Path(audio_path).stem
        final_fps = args.fps

        ref_image_pil = Image.open(ref_image_path).convert("RGB")

        # ==================== face_locator =====================
        pose_list = []
        for index in range(len(os.listdir(pose_dir))):
            tgt_musk_path = os.path.join(pose_dir, f"{index}.pkl")

            with open(tgt_musk_path, "rb") as f:
                tgt_kpts = pickle.load(f)
            tgt_musk = visualizer.draw_landmarks((args.W, args.H), tgt_kpts)
            tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
            pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
        face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)


        video = pipe(
            ref_image_pil,
            audio_path,
            face_mask_tensor,
            width,
            height,
            args.L,
            args.steps,
            args.cfg,
            generator=generator,
            audio_sample_rate=args.sample_rate,
            context_frames=12,
            fps=final_fps,
            context_overlap=3
        ).videos

        final_length = min(video.shape[2], face_mask_tensor.shape[2])
        video = torch.cat([video[:, :, :final_length, :, :], face_mask_tensor[:, :, :final_length, :, :].detach().cpu()], dim=-1)
        save_videos_grid(
            video,
            f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4",
            n_rows=2,
            fps=final_fps,
        )

        from moviepy.editor import VideoFileClip, AudioFileClip
        video_clip = VideoFileClip(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4")
        audio_clip = AudioFileClip(audio_path)
        video_clip = video_clip.set_audio(audio_clip)
        video_clip.write_videofile(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4", codec="libx264", audio_codec="aac")
        print(f"{save_dir}/{ref_name}_{audio_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}_withaudio.mp4")


if __name__ == "__main__":
    main()